1 : // Deque implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 3, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // Under Section 7 of GPL version 3, you are granted additional
18 : // permissions described in the GCC Runtime Library Exception, version
19 : // 3.1, as published by the Free Software Foundation.
20 :
21 : // You should have received a copy of the GNU General Public License and
22 : // a copy of the GCC Runtime Library Exception along with this program;
23 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 : // <http://www.gnu.org/licenses/>.
25 :
26 : /*
27 : *
28 : * Copyright (c) 1994
29 : * Hewlett-Packard Company
30 : *
31 : * Permission to use, copy, modify, distribute and sell this software
32 : * and its documentation for any purpose is hereby granted without fee,
33 : * provided that the above copyright notice appear in all copies and
34 : * that both that copyright notice and this permission notice appear
35 : * in supporting documentation. Hewlett-Packard Company makes no
36 : * representations about the suitability of this software for any
37 : * purpose. It is provided "as is" without express or implied warranty.
38 : *
39 : *
40 : * Copyright (c) 1997
41 : * Silicon Graphics Computer Systems, Inc.
42 : *
43 : * Permission to use, copy, modify, distribute and sell this software
44 : * and its documentation for any purpose is hereby granted without fee,
45 : * provided that the above copyright notice appear in all copies and
46 : * that both that copyright notice and this permission notice appear
47 : * in supporting documentation. Silicon Graphics makes no
48 : * representations about the suitability of this software for any
49 : * purpose. It is provided "as is" without express or implied warranty.
50 : */
51 :
52 : /** @file stl_deque.h
53 : * This is an internal header file, included by other library headers.
54 : * You should not attempt to use it directly.
55 : */
56 :
57 : #ifndef _STL_DEQUE_H
58 : #define _STL_DEQUE_H 1
59 :
60 : #include <bits/concept_check.h>
61 : #include <bits/stl_iterator_base_types.h>
62 : #include <bits/stl_iterator_base_funcs.h>
63 : #include <initializer_list>
64 :
65 : _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
66 :
67 : /**
68 : * @brief This function controls the size of memory nodes.
69 : * @param size The size of an element.
70 : * @return The number (not byte size) of elements per node.
71 : *
72 : * This function started off as a compiler kludge from SGI, but
73 : * seems to be a useful wrapper around a repeated constant
74 : * expression. The @b 512 is tunable (and no other code needs to
75 : * change), but no investigation has been done since inheriting the
76 : * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
77 : * you are doing, however: changing it breaks the binary
78 : * compatibility!!
79 : */
80 :
81 : #ifndef _GLIBCXX_DEQUE_BUF_SIZE
82 : #define _GLIBCXX_DEQUE_BUF_SIZE 512
83 : #endif
84 :
85 : inline size_t
86 9235801 : __deque_buf_size(size_t __size)
87 : { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
88 9235801 : ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
89 :
90 :
91 : /**
92 : * @brief A deque::iterator.
93 : *
94 : * Quite a bit of intelligence here. Much of the functionality of
95 : * deque is actually passed off to this class. A deque holds two
96 : * of these internally, marking its valid range. Access to
97 : * elements is done as offsets of either of those two, relying on
98 : * operator overloading in this class.
99 : *
100 : * All the functions are op overloads except for _M_set_node.
101 : */
102 : template<typename _Tp, typename _Ref, typename _Ptr>
103 : struct _Deque_iterator
104 : {
105 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
106 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
107 :
108 58868 : static size_t _S_buffer_size()
109 58868 : { return __deque_buf_size(sizeof(_Tp)); }
110 :
111 : typedef std::random_access_iterator_tag iterator_category;
112 : typedef _Tp value_type;
113 : typedef _Ptr pointer;
114 : typedef _Ref reference;
115 : typedef size_t size_type;
116 : typedef ptrdiff_t difference_type;
117 : typedef _Tp** _Map_pointer;
118 : typedef _Deque_iterator _Self;
119 :
120 : _Tp* _M_cur;
121 : _Tp* _M_first;
122 : _Tp* _M_last;
123 : _Map_pointer _M_node;
124 :
125 : _Deque_iterator(_Tp* __x, _Map_pointer __y)
126 : : _M_cur(__x), _M_first(*__y),
127 : _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
128 :
129 58868 : _Deque_iterator()
130 58868 : : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
131 :
132 105860577 : _Deque_iterator(const iterator& __x)
133 : : _M_cur(__x._M_cur), _M_first(__x._M_first),
134 105860577 : _M_last(__x._M_last), _M_node(__x._M_node) { }
135 :
136 : reference
137 5676 : operator*() const
138 5676 : { return *_M_cur; }
139 :
140 : pointer
141 0 : operator->() const
142 0 : { return _M_cur; }
143 :
144 : _Self&
145 0 : operator++()
146 : {
147 0 : ++_M_cur;
148 0 : if (_M_cur == _M_last)
149 : {
150 0 : _M_set_node(_M_node + 1);
151 0 : _M_cur = _M_first;
152 : }
153 0 : return *this;
154 : }
155 :
156 : _Self
157 0 : operator++(int)
158 : {
159 0 : _Self __tmp = *this;
160 0 : ++*this;
161 : return __tmp;
162 : }
163 :
164 : _Self&
165 4257 : operator--()
166 : {
167 4257 : if (_M_cur == _M_first)
168 : {
169 0 : _M_set_node(_M_node - 1);
170 0 : _M_cur = _M_last;
171 : }
172 4257 : --_M_cur;
173 4257 : return *this;
174 : }
175 :
176 : _Self
177 : operator--(int)
178 : {
179 : _Self __tmp = *this;
180 : --*this;
181 : return __tmp;
182 : }
183 :
184 : _Self&
185 0 : operator+=(difference_type __n)
186 : {
187 0 : const difference_type __offset = __n + (_M_cur - _M_first);
188 0 : if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
189 0 : _M_cur += __n;
190 : else
191 : {
192 : const difference_type __node_offset =
193 : __offset > 0 ? __offset / difference_type(_S_buffer_size())
194 : : -difference_type((-__offset - 1)
195 0 : / _S_buffer_size()) - 1;
196 0 : _M_set_node(_M_node + __node_offset);
197 0 : _M_cur = _M_first + (__offset - __node_offset
198 : * difference_type(_S_buffer_size()));
199 : }
200 0 : return *this;
201 : }
202 :
203 : _Self
204 0 : operator+(difference_type __n) const
205 : {
206 0 : _Self __tmp = *this;
207 0 : return __tmp += __n;
208 : }
209 :
210 : _Self&
211 0 : operator-=(difference_type __n)
212 0 : { return *this += -__n; }
213 :
214 : _Self
215 : operator-(difference_type __n) const
216 : {
217 : _Self __tmp = *this;
218 : return __tmp -= __n;
219 : }
220 :
221 : reference
222 : operator[](difference_type __n) const
223 : { return *(*this + __n); }
224 :
225 : /**
226 : * Prepares to traverse new_node. Sets everything except
227 : * _M_cur, which should therefore be set by the caller
228 : * immediately afterwards, based on _M_first and _M_last.
229 : */
230 : void
231 58868 : _M_set_node(_Map_pointer __new_node)
232 : {
233 58868 : _M_node = __new_node;
234 58868 : _M_first = *__new_node;
235 58868 : _M_last = _M_first + difference_type(_S_buffer_size());
236 58868 : }
237 : };
238 :
239 : // Note: we also provide overloads whose operands are of the same type in
240 : // order to avoid ambiguous overload resolution when std::rel_ops operators
241 : // are in scope (for additional details, see libstdc++/3628)
242 : template<typename _Tp, typename _Ref, typename _Ptr>
243 : inline bool
244 51088 : operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
245 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
246 51088 : { return __x._M_cur == __y._M_cur; }
247 :
248 : template<typename _Tp, typename _RefL, typename _PtrL,
249 : typename _RefR, typename _PtrR>
250 : inline bool
251 0 : operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
252 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
253 0 : { return __x._M_cur == __y._M_cur; }
254 :
255 : template<typename _Tp, typename _Ref, typename _Ptr>
256 : inline bool
257 0 : operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
258 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
259 0 : { return !(__x == __y); }
260 :
261 : template<typename _Tp, typename _RefL, typename _PtrL,
262 : typename _RefR, typename _PtrR>
263 : inline bool
264 0 : operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
265 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
266 0 : { return !(__x == __y); }
267 :
268 : template<typename _Tp, typename _Ref, typename _Ptr>
269 : inline bool
270 : operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
271 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
272 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
273 : : (__x._M_node < __y._M_node); }
274 :
275 : template<typename _Tp, typename _RefL, typename _PtrL,
276 : typename _RefR, typename _PtrR>
277 : inline bool
278 : operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
279 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
280 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
281 : : (__x._M_node < __y._M_node); }
282 :
283 : template<typename _Tp, typename _Ref, typename _Ptr>
284 : inline bool
285 : operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
286 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
287 : { return __y < __x; }
288 :
289 : template<typename _Tp, typename _RefL, typename _PtrL,
290 : typename _RefR, typename _PtrR>
291 : inline bool
292 : operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
293 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
294 : { return __y < __x; }
295 :
296 : template<typename _Tp, typename _Ref, typename _Ptr>
297 : inline bool
298 : operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
299 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
300 : { return !(__y < __x); }
301 :
302 : template<typename _Tp, typename _RefL, typename _PtrL,
303 : typename _RefR, typename _PtrR>
304 : inline bool
305 : operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
306 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
307 : { return !(__y < __x); }
308 :
309 : template<typename _Tp, typename _Ref, typename _Ptr>
310 : inline bool
311 : operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
312 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
313 : { return !(__x < __y); }
314 :
315 : template<typename _Tp, typename _RefL, typename _PtrL,
316 : typename _RefR, typename _PtrR>
317 : inline bool
318 : operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
319 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
320 : { return !(__x < __y); }
321 :
322 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
323 : // According to the resolution of DR179 not only the various comparison
324 : // operators but also operator- must accept mixed iterator/const_iterator
325 : // parameters.
326 : template<typename _Tp, typename _Ref, typename _Ptr>
327 : inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
328 0 : operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
329 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
330 : {
331 : return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
332 : (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
333 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
334 0 : + (__y._M_last - __y._M_cur);
335 : }
336 :
337 : template<typename _Tp, typename _RefL, typename _PtrL,
338 : typename _RefR, typename _PtrR>
339 : inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
340 : operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
341 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
342 : {
343 : return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
344 : (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
345 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
346 : + (__y._M_last - __y._M_cur);
347 : }
348 :
349 : template<typename _Tp, typename _Ref, typename _Ptr>
350 : inline _Deque_iterator<_Tp, _Ref, _Ptr>
351 : operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
352 : { return __x + __n; }
353 :
354 : template<typename _Tp>
355 : void
356 : fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
357 : const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
358 :
359 : template<typename _Tp>
360 : _Deque_iterator<_Tp, _Tp&, _Tp*>
361 : copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
362 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
363 : _Deque_iterator<_Tp, _Tp&, _Tp*>);
364 :
365 : template<typename _Tp>
366 : inline _Deque_iterator<_Tp, _Tp&, _Tp*>
367 : copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
368 : _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
369 : _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
370 : { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
371 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
372 : __result); }
373 :
374 : template<typename _Tp>
375 : _Deque_iterator<_Tp, _Tp&, _Tp*>
376 : copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
377 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
378 : _Deque_iterator<_Tp, _Tp&, _Tp*>);
379 :
380 : template<typename _Tp>
381 : inline _Deque_iterator<_Tp, _Tp&, _Tp*>
382 : copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
383 : _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
384 : _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
385 : { return std::copy_backward(_Deque_iterator<_Tp,
386 : const _Tp&, const _Tp*>(__first),
387 : _Deque_iterator<_Tp,
388 : const _Tp&, const _Tp*>(__last),
389 : __result); }
390 :
391 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
392 : template<typename _Tp>
393 : _Deque_iterator<_Tp, _Tp&, _Tp*>
394 : move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
395 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
396 : _Deque_iterator<_Tp, _Tp&, _Tp*>);
397 :
398 : template<typename _Tp>
399 : inline _Deque_iterator<_Tp, _Tp&, _Tp*>
400 0 : move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
401 : _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
402 : _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
403 : { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
404 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
405 0 : __result); }
406 :
407 : template<typename _Tp>
408 : _Deque_iterator<_Tp, _Tp&, _Tp*>
409 : move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
410 : _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
411 : _Deque_iterator<_Tp, _Tp&, _Tp*>);
412 :
413 : template<typename _Tp>
414 : inline _Deque_iterator<_Tp, _Tp&, _Tp*>
415 0 : move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
416 : _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
417 : _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
418 : { return std::move_backward(_Deque_iterator<_Tp,
419 : const _Tp&, const _Tp*>(__first),
420 : _Deque_iterator<_Tp,
421 : const _Tp&, const _Tp*>(__last),
422 0 : __result); }
423 : #endif
424 :
425 : /**
426 : * Deque base class. This class provides the unified face for %deque's
427 : * allocation. This class's constructor and destructor allocate and
428 : * deallocate (but do not initialize) storage. This makes %exception
429 : * safety easier.
430 : *
431 : * Nothing in this class ever constructs or destroys an actual Tp element.
432 : * (Deque handles that itself.) Only/All memory management is performed
433 : * here.
434 : */
435 : template<typename _Tp, typename _Alloc>
436 : class _Deque_base
437 : {
438 : public:
439 : typedef _Alloc allocator_type;
440 :
441 : allocator_type
442 : get_allocator() const
443 : { return allocator_type(_M_get_Tp_allocator()); }
444 :
445 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
446 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
447 :
448 14717 : _Deque_base()
449 14717 : : _M_impl()
450 14717 : { _M_initialize_map(0); }
451 :
452 0 : _Deque_base(const allocator_type& __a, size_t __num_elements)
453 0 : : _M_impl(__a)
454 0 : { _M_initialize_map(__num_elements); }
455 :
456 : _Deque_base(const allocator_type& __a)
457 : : _M_impl(__a)
458 : { }
459 :
460 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
461 14717 : _Deque_base(_Deque_base&& __x)
462 14717 : : _M_impl(__x._M_get_Tp_allocator())
463 : {
464 14717 : _M_initialize_map(0);
465 14717 : if (__x._M_impl._M_map)
466 : {
467 14717 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
468 14717 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
469 14717 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
470 14717 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
471 : }
472 14717 : }
473 : #endif
474 :
475 : ~_Deque_base();
476 :
477 : protected:
478 : //This struct encapsulates the implementation of the std::deque
479 : //standard container and at the same time makes use of the EBO
480 : //for empty allocators.
481 : typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
482 :
483 : typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
484 :
485 : struct _Deque_impl
486 : : public _Tp_alloc_type
487 29423 : {
488 : _Tp** _M_map;
489 : size_t _M_map_size;
490 : iterator _M_start;
491 : iterator _M_finish;
492 :
493 14717 : _Deque_impl()
494 : : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
495 14717 : _M_start(), _M_finish()
496 14717 : { }
497 :
498 14717 : _Deque_impl(const _Tp_alloc_type& __a)
499 : : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
500 14717 : _M_start(), _M_finish()
501 14717 : { }
502 : };
503 :
504 : _Tp_alloc_type&
505 46981 : _M_get_Tp_allocator()
506 46981 : { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
507 :
508 : const _Tp_alloc_type&
509 58857 : _M_get_Tp_allocator() const
510 58857 : { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
511 :
512 : _Map_alloc_type
513 58857 : _M_get_map_allocator() const
514 58857 : { return _Map_alloc_type(_M_get_Tp_allocator()); }
515 :
516 : _Tp*
517 29434 : _M_allocate_node()
518 : {
519 29434 : return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
520 : }
521 :
522 : void
523 29423 : _M_deallocate_node(_Tp* __p)
524 : {
525 29423 : _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
526 29423 : }
527 :
528 : _Tp**
529 29434 : _M_allocate_map(size_t __n)
530 29434 : { return _M_get_map_allocator().allocate(__n); }
531 :
532 : void
533 29423 : _M_deallocate_map(_Tp** __p, size_t __n)
534 29423 : { _M_get_map_allocator().deallocate(__p, __n); }
535 :
536 : protected:
537 : void _M_initialize_map(size_t);
538 : void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
539 : void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
540 : enum { _S_initial_map_size = 8 };
541 :
542 : _Deque_impl _M_impl;
543 : };
544 :
545 : template<typename _Tp, typename _Alloc>
546 29423 : _Deque_base<_Tp, _Alloc>::
547 : ~_Deque_base()
548 : {
549 29423 : if (this->_M_impl._M_map)
550 : {
551 29423 : _M_destroy_nodes(this->_M_impl._M_start._M_node,
552 : this->_M_impl._M_finish._M_node + 1);
553 29423 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
554 : }
555 29423 : }
556 :
557 : /**
558 : * @brief Layout storage.
559 : * @param num_elements The count of T's for which to allocate space
560 : * at first.
561 : * @return Nothing.
562 : *
563 : * The initial underlying memory layout is a bit complicated...
564 : */
565 : template<typename _Tp, typename _Alloc>
566 : void
567 29434 : _Deque_base<_Tp, _Alloc>::
568 : _M_initialize_map(size_t __num_elements)
569 : {
570 : const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
571 29434 : + 1);
572 :
573 29434 : this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
574 : size_t(__num_nodes + 2));
575 29434 : this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
576 :
577 : // For "small" maps (needing less than _M_map_size nodes), allocation
578 : // starts in the middle elements and grows outwards. So nstart may be
579 : // the beginning of _M_map, but for small maps it may be as far in as
580 : // _M_map+3.
581 :
582 : _Tp** __nstart = (this->_M_impl._M_map
583 29434 : + (this->_M_impl._M_map_size - __num_nodes) / 2);
584 29434 : _Tp** __nfinish = __nstart + __num_nodes;
585 :
586 : __try
587 29434 : { _M_create_nodes(__nstart, __nfinish); }
588 : __catch(...)
589 : {
590 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
591 : this->_M_impl._M_map = 0;
592 : this->_M_impl._M_map_size = 0;
593 : __throw_exception_again;
594 : }
595 :
596 29434 : this->_M_impl._M_start._M_set_node(__nstart);
597 29434 : this->_M_impl._M_finish._M_set_node(__nfinish - 1);
598 29434 : this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
599 29434 : this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
600 : + __num_elements
601 : % __deque_buf_size(sizeof(_Tp)));
602 29434 : }
603 :
604 : template<typename _Tp, typename _Alloc>
605 : void
606 29434 : _Deque_base<_Tp, _Alloc>::
607 : _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
608 : {
609 : _Tp** __cur;
610 : __try
611 : {
612 58868 : for (__cur = __nstart; __cur < __nfinish; ++__cur)
613 29434 : *__cur = this->_M_allocate_node();
614 : }
615 : __catch(...)
616 : {
617 : _M_destroy_nodes(__nstart, __cur);
618 : __throw_exception_again;
619 : }
620 29434 : }
621 :
622 : template<typename _Tp, typename _Alloc>
623 : void
624 29423 : _Deque_base<_Tp, _Alloc>::
625 : _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
626 : {
627 58846 : for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
628 29423 : _M_deallocate_node(*__n);
629 29423 : }
630 :
631 : /**
632 : * @brief A standard container using fixed-size memory allocation and
633 : * constant-time manipulation of elements at either end.
634 : *
635 : * @ingroup sequences
636 : *
637 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
638 : * <a href="tables.html#66">reversible container</a>, and a
639 : * <a href="tables.html#67">sequence</a>, including the
640 : * <a href="tables.html#68">optional sequence requirements</a>.
641 : *
642 : * In previous HP/SGI versions of deque, there was an extra template
643 : * parameter so users could control the node size. This extension turned
644 : * out to violate the C++ standard (it can be detected using template
645 : * template parameters), and it was removed.
646 : *
647 : * Here's how a deque<Tp> manages memory. Each deque has 4 members:
648 : *
649 : * - Tp** _M_map
650 : * - size_t _M_map_size
651 : * - iterator _M_start, _M_finish
652 : *
653 : * map_size is at least 8. %map is an array of map_size
654 : * pointers-to-@anodes. (The name %map has nothing to do with the
655 : * std::map class, and @b nodes should not be confused with
656 : * std::list's usage of @a node.)
657 : *
658 : * A @a node has no specific type name as such, but it is referred
659 : * to as @a node in this file. It is a simple array-of-Tp. If Tp
660 : * is very large, there will be one Tp element per node (i.e., an
661 : * @a array of one). For non-huge Tp's, node size is inversely
662 : * related to Tp size: the larger the Tp, the fewer Tp's will fit
663 : * in a node. The goal here is to keep the total size of a node
664 : * relatively small and constant over different Tp's, to improve
665 : * allocator efficiency.
666 : *
667 : * Not every pointer in the %map array will point to a node. If
668 : * the initial number of elements in the deque is small, the
669 : * /middle/ %map pointers will be valid, and the ones at the edges
670 : * will be unused. This same situation will arise as the %map
671 : * grows: available %map pointers, if any, will be on the ends. As
672 : * new nodes are created, only a subset of the %map's pointers need
673 : * to be copied @a outward.
674 : *
675 : * Class invariants:
676 : * - For any nonsingular iterator i:
677 : * - i.node points to a member of the %map array. (Yes, you read that
678 : * correctly: i.node does not actually point to a node.) The member of
679 : * the %map array is what actually points to the node.
680 : * - i.first == *(i.node) (This points to the node (first Tp element).)
681 : * - i.last == i.first + node_size
682 : * - i.cur is a pointer in the range [i.first, i.last). NOTE:
683 : * the implication of this is that i.cur is always a dereferenceable
684 : * pointer, even if i is a past-the-end iterator.
685 : * - Start and Finish are always nonsingular iterators. NOTE: this
686 : * means that an empty deque must have one node, a deque with <N
687 : * elements (where N is the node buffer size) must have one node, a
688 : * deque with N through (2N-1) elements must have two nodes, etc.
689 : * - For every node other than start.node and finish.node, every
690 : * element in the node is an initialized object. If start.node ==
691 : * finish.node, then [start.cur, finish.cur) are initialized
692 : * objects, and the elements outside that range are uninitialized
693 : * storage. Otherwise, [start.cur, start.last) and [finish.first,
694 : * finish.cur) are initialized objects, and [start.first, start.cur)
695 : * and [finish.cur, finish.last) are uninitialized storage.
696 : * - [%map, %map + map_size) is a valid, non-empty range.
697 : * - [start.node, finish.node] is a valid range contained within
698 : * [%map, %map + map_size).
699 : * - A pointer in the range [%map, %map + map_size) points to an allocated
700 : * node if and only if the pointer is in the range
701 : * [start.node, finish.node].
702 : *
703 : * Here's the magic: nothing in deque is @b aware of the discontiguous
704 : * storage!
705 : *
706 : * The memory setup and layout occurs in the parent, _Base, and the iterator
707 : * class is entirely responsible for @a leaping from one node to the next.
708 : * All the implementation routines for deque itself work only through the
709 : * start and finish iterators. This keeps the routines simple and sane,
710 : * and we can use other standard algorithms as well.
711 : */
712 : template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
713 : class deque : protected _Deque_base<_Tp, _Alloc>
714 : {
715 : // concept requirements
716 : typedef typename _Alloc::value_type _Alloc_value_type;
717 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
718 : __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
719 :
720 : typedef _Deque_base<_Tp, _Alloc> _Base;
721 : typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
722 :
723 : public:
724 : typedef _Tp value_type;
725 : typedef typename _Tp_alloc_type::pointer pointer;
726 : typedef typename _Tp_alloc_type::const_pointer const_pointer;
727 : typedef typename _Tp_alloc_type::reference reference;
728 : typedef typename _Tp_alloc_type::const_reference const_reference;
729 : typedef typename _Base::iterator iterator;
730 : typedef typename _Base::const_iterator const_iterator;
731 : typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
732 : typedef std::reverse_iterator<iterator> reverse_iterator;
733 : typedef size_t size_type;
734 : typedef ptrdiff_t difference_type;
735 : typedef _Alloc allocator_type;
736 :
737 : protected:
738 : typedef pointer* _Map_pointer;
739 :
740 0 : static size_t _S_buffer_size()
741 0 : { return __deque_buf_size(sizeof(_Tp)); }
742 :
743 : // Functions controlling memory layout, and nothing else.
744 : using _Base::_M_initialize_map;
745 : using _Base::_M_create_nodes;
746 : using _Base::_M_destroy_nodes;
747 : using _Base::_M_allocate_node;
748 : using _Base::_M_deallocate_node;
749 : using _Base::_M_allocate_map;
750 : using _Base::_M_deallocate_map;
751 : using _Base::_M_get_Tp_allocator;
752 :
753 : /**
754 : * A total of four data members accumulated down the hierarchy.
755 : * May be accessed via _M_impl.*
756 : */
757 : using _Base::_M_impl;
758 :
759 : public:
760 : // [23.2.1.1] construct/copy/destroy
761 : // (assign() and get_allocator() are also listed in this section)
762 : /**
763 : * @brief Default constructor creates no elements.
764 : */
765 14717 : deque()
766 14717 : : _Base() { }
767 :
768 : /**
769 : * @brief Creates a %deque with no elements.
770 : * @param a An allocator object.
771 : */
772 : explicit
773 : deque(const allocator_type& __a)
774 : : _Base(__a, 0) { }
775 :
776 : /**
777 : * @brief Creates a %deque with copies of an exemplar element.
778 : * @param n The number of elements to initially create.
779 : * @param value An element to copy.
780 : * @param a An allocator.
781 : *
782 : * This constructor fills the %deque with @a n copies of @a value.
783 : */
784 : explicit
785 : deque(size_type __n, const value_type& __value = value_type(),
786 : const allocator_type& __a = allocator_type())
787 : : _Base(__a, __n)
788 : { _M_fill_initialize(__value); }
789 :
790 : /**
791 : * @brief %Deque copy constructor.
792 : * @param x A %deque of identical element and allocator types.
793 : *
794 : * The newly-created %deque uses a copy of the allocation object used
795 : * by @a x.
796 : */
797 0 : deque(const deque& __x)
798 0 : : _Base(__x._M_get_Tp_allocator(), __x.size())
799 0 : { std::__uninitialized_copy_a(__x.begin(), __x.end(),
800 : this->_M_impl._M_start,
801 0 : _M_get_Tp_allocator()); }
802 :
803 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
804 : /**
805 : * @brief %Deque move constructor.
806 : * @param x A %deque of identical element and allocator types.
807 : *
808 : * The newly-created %deque contains the exact contents of @a x.
809 : * The contents of @a x are a valid, but unspecified %deque.
810 : */
811 14717 : deque(deque&& __x)
812 14717 : : _Base(std::forward<_Base>(__x)) { }
813 :
814 : /**
815 : * @brief Builds a %deque from an initializer list.
816 : * @param l An initializer_list.
817 : * @param a An allocator object.
818 : *
819 : * Create a %deque consisting of copies of the elements in the
820 : * initializer_list @a l.
821 : *
822 : * This will call the element type's copy constructor N times
823 : * (where N is l.size()) and do no memory reallocation.
824 : */
825 : deque(initializer_list<value_type> __l,
826 : const allocator_type& __a = allocator_type())
827 : : _Base(__a)
828 : {
829 : _M_range_initialize(__l.begin(), __l.end(),
830 : random_access_iterator_tag());
831 : }
832 : #endif
833 :
834 : /**
835 : * @brief Builds a %deque from a range.
836 : * @param first An input iterator.
837 : * @param last An input iterator.
838 : * @param a An allocator object.
839 : *
840 : * Create a %deque consisting of copies of the elements from [first,
841 : * last).
842 : *
843 : * If the iterators are forward, bidirectional, or random-access, then
844 : * this will call the elements' copy constructor N times (where N is
845 : * distance(first,last)) and do no memory reallocation. But if only
846 : * input iterators are used, then this will do at most 2N calls to the
847 : * copy constructor, and logN memory reallocations.
848 : */
849 : template<typename _InputIterator>
850 : deque(_InputIterator __first, _InputIterator __last,
851 : const allocator_type& __a = allocator_type())
852 : : _Base(__a)
853 : {
854 : // Check whether it's an integral type. If so, it's not an iterator.
855 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
856 : _M_initialize_dispatch(__first, __last, _Integral());
857 : }
858 :
859 : /**
860 : * The dtor only erases the elements, and note that if the elements
861 : * themselves are pointers, the pointed-to memory is not touched in any
862 : * way. Managing the pointer is the user's responsibility.
863 : */
864 29423 : ~deque()
865 29423 : { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
866 :
867 : /**
868 : * @brief %Deque assignment operator.
869 : * @param x A %deque of identical element and allocator types.
870 : *
871 : * All the elements of @a x are copied, but unlike the copy constructor,
872 : * the allocator object is not copied.
873 : */
874 : deque&
875 : operator=(const deque& __x);
876 :
877 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
878 : /**
879 : * @brief %Deque move assignment operator.
880 : * @param x A %deque of identical element and allocator types.
881 : *
882 : * The contents of @a x are moved into this deque (without copying).
883 : * @a x is a valid, but unspecified %deque.
884 : */
885 : deque&
886 : operator=(deque&& __x)
887 : {
888 : // NB: DR 1204.
889 : // NB: DR 675.
890 : this->clear();
891 : this->swap(__x);
892 : return *this;
893 : }
894 :
895 : /**
896 : * @brief Assigns an initializer list to a %deque.
897 : * @param l An initializer_list.
898 : *
899 : * This function fills a %deque with copies of the elements in the
900 : * initializer_list @a l.
901 : *
902 : * Note that the assignment completely changes the %deque and that the
903 : * resulting %deque's size is the same as the number of elements
904 : * assigned. Old data may be lost.
905 : */
906 : deque&
907 : operator=(initializer_list<value_type> __l)
908 : {
909 : this->assign(__l.begin(), __l.end());
910 : return *this;
911 : }
912 : #endif
913 :
914 : /**
915 : * @brief Assigns a given value to a %deque.
916 : * @param n Number of elements to be assigned.
917 : * @param val Value to be assigned.
918 : *
919 : * This function fills a %deque with @a n copies of the given
920 : * value. Note that the assignment completely changes the
921 : * %deque and that the resulting %deque's size is the same as
922 : * the number of elements assigned. Old data may be lost.
923 : */
924 : void
925 : assign(size_type __n, const value_type& __val)
926 : { _M_fill_assign(__n, __val); }
927 :
928 : /**
929 : * @brief Assigns a range to a %deque.
930 : * @param first An input iterator.
931 : * @param last An input iterator.
932 : *
933 : * This function fills a %deque with copies of the elements in the
934 : * range [first,last).
935 : *
936 : * Note that the assignment completely changes the %deque and that the
937 : * resulting %deque's size is the same as the number of elements
938 : * assigned. Old data may be lost.
939 : */
940 : template<typename _InputIterator>
941 : void
942 : assign(_InputIterator __first, _InputIterator __last)
943 : {
944 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
945 : _M_assign_dispatch(__first, __last, _Integral());
946 : }
947 :
948 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
949 : /**
950 : * @brief Assigns an initializer list to a %deque.
951 : * @param l An initializer_list.
952 : *
953 : * This function fills a %deque with copies of the elements in the
954 : * initializer_list @a l.
955 : *
956 : * Note that the assignment completely changes the %deque and that the
957 : * resulting %deque's size is the same as the number of elements
958 : * assigned. Old data may be lost.
959 : */
960 : void
961 : assign(initializer_list<value_type> __l)
962 : { this->assign(__l.begin(), __l.end()); }
963 : #endif
964 :
965 : /// Get a copy of the memory allocation object.
966 : allocator_type
967 : get_allocator() const
968 : { return _Base::get_allocator(); }
969 :
970 : // iterators
971 : /**
972 : * Returns a read/write iterator that points to the first element in the
973 : * %deque. Iteration is done in ordinary element order.
974 : */
975 : iterator
976 30842 : begin()
977 30842 : { return this->_M_impl._M_start; }
978 :
979 : /**
980 : * Returns a read-only (constant) iterator that points to the first
981 : * element in the %deque. Iteration is done in ordinary element order.
982 : */
983 : const_iterator
984 0 : begin() const
985 0 : { return this->_M_impl._M_start; }
986 :
987 : /**
988 : * Returns a read/write iterator that points one past the last
989 : * element in the %deque. Iteration is done in ordinary
990 : * element order.
991 : */
992 : iterator
993 105797457 : end()
994 105797457 : { return this->_M_impl._M_finish; }
995 :
996 : /**
997 : * Returns a read-only (constant) iterator that points one past
998 : * the last element in the %deque. Iteration is done in
999 : * ordinary element order.
1000 : */
1001 : const_iterator
1002 0 : end() const
1003 0 : { return this->_M_impl._M_finish; }
1004 :
1005 : /**
1006 : * Returns a read/write reverse iterator that points to the
1007 : * last element in the %deque. Iteration is done in reverse
1008 : * element order.
1009 : */
1010 : reverse_iterator
1011 : rbegin()
1012 : { return reverse_iterator(this->_M_impl._M_finish); }
1013 :
1014 : /**
1015 : * Returns a read-only (constant) reverse iterator that points
1016 : * to the last element in the %deque. Iteration is done in
1017 : * reverse element order.
1018 : */
1019 : const_reverse_iterator
1020 : rbegin() const
1021 : { return const_reverse_iterator(this->_M_impl._M_finish); }
1022 :
1023 : /**
1024 : * Returns a read/write reverse iterator that points to one
1025 : * before the first element in the %deque. Iteration is done
1026 : * in reverse element order.
1027 : */
1028 : reverse_iterator
1029 : rend()
1030 : { return reverse_iterator(this->_M_impl._M_start); }
1031 :
1032 : /**
1033 : * Returns a read-only (constant) reverse iterator that points
1034 : * to one before the first element in the %deque. Iteration is
1035 : * done in reverse element order.
1036 : */
1037 : const_reverse_iterator
1038 : rend() const
1039 : { return const_reverse_iterator(this->_M_impl._M_start); }
1040 :
1041 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1042 : /**
1043 : * Returns a read-only (constant) iterator that points to the first
1044 : * element in the %deque. Iteration is done in ordinary element order.
1045 : */
1046 : const_iterator
1047 : cbegin() const
1048 : { return this->_M_impl._M_start; }
1049 :
1050 : /**
1051 : * Returns a read-only (constant) iterator that points one past
1052 : * the last element in the %deque. Iteration is done in
1053 : * ordinary element order.
1054 : */
1055 : const_iterator
1056 : cend() const
1057 : { return this->_M_impl._M_finish; }
1058 :
1059 : /**
1060 : * Returns a read-only (constant) reverse iterator that points
1061 : * to the last element in the %deque. Iteration is done in
1062 : * reverse element order.
1063 : */
1064 : const_reverse_iterator
1065 : crbegin() const
1066 : { return const_reverse_iterator(this->_M_impl._M_finish); }
1067 :
1068 : /**
1069 : * Returns a read-only (constant) reverse iterator that points
1070 : * to one before the first element in the %deque. Iteration is
1071 : * done in reverse element order.
1072 : */
1073 : const_reverse_iterator
1074 : crend() const
1075 : { return const_reverse_iterator(this->_M_impl._M_start); }
1076 : #endif
1077 :
1078 : // [23.2.1.2] capacity
1079 : /** Returns the number of elements in the %deque. */
1080 : size_type
1081 0 : size() const
1082 0 : { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1083 :
1084 : /** Returns the size() of the largest possible %deque. */
1085 : size_type
1086 : max_size() const
1087 : { return _M_get_Tp_allocator().max_size(); }
1088 :
1089 : /**
1090 : * @brief Resizes the %deque to the specified number of elements.
1091 : * @param new_size Number of elements the %deque should contain.
1092 : * @param x Data with which new elements should be populated.
1093 : *
1094 : * This function will %resize the %deque to the specified
1095 : * number of elements. If the number is smaller than the
1096 : * %deque's current size the %deque is truncated, otherwise the
1097 : * %deque is extended and new elements are populated with given
1098 : * data.
1099 : */
1100 : void
1101 : resize(size_type __new_size, value_type __x = value_type())
1102 : {
1103 : const size_type __len = size();
1104 : if (__new_size < __len)
1105 : _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
1106 : else
1107 : insert(this->_M_impl._M_finish, __new_size - __len, __x);
1108 : }
1109 :
1110 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1111 : /** A non-binding request to reduce memory use. */
1112 : void
1113 : shrink_to_fit()
1114 : { std::__shrink_to_fit<deque>::_S_do_it(*this); }
1115 : #endif
1116 :
1117 : /**
1118 : * Returns true if the %deque is empty. (Thus begin() would
1119 : * equal end().)
1120 : */
1121 : bool
1122 51088 : empty() const
1123 51088 : { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1124 :
1125 : // element access
1126 : /**
1127 : * @brief Subscript access to the data contained in the %deque.
1128 : * @param n The index of the element for which data should be
1129 : * accessed.
1130 : * @return Read/write reference to data.
1131 : *
1132 : * This operator allows for easy, array-style, data access.
1133 : * Note that data access with this operator is unchecked and
1134 : * out_of_range lookups are not defined. (For checked lookups
1135 : * see at().)
1136 : */
1137 : reference
1138 : operator[](size_type __n)
1139 : { return this->_M_impl._M_start[difference_type(__n)]; }
1140 :
1141 : /**
1142 : * @brief Subscript access to the data contained in the %deque.
1143 : * @param n The index of the element for which data should be
1144 : * accessed.
1145 : * @return Read-only (constant) reference to data.
1146 : *
1147 : * This operator allows for easy, array-style, data access.
1148 : * Note that data access with this operator is unchecked and
1149 : * out_of_range lookups are not defined. (For checked lookups
1150 : * see at().)
1151 : */
1152 : const_reference
1153 : operator[](size_type __n) const
1154 : { return this->_M_impl._M_start[difference_type(__n)]; }
1155 :
1156 : protected:
1157 : /// Safety check used only from at().
1158 : void
1159 : _M_range_check(size_type __n) const
1160 : {
1161 : if (__n >= this->size())
1162 : __throw_out_of_range(__N("deque::_M_range_check"));
1163 : }
1164 :
1165 : public:
1166 : /**
1167 : * @brief Provides access to the data contained in the %deque.
1168 : * @param n The index of the element for which data should be
1169 : * accessed.
1170 : * @return Read/write reference to data.
1171 : * @throw std::out_of_range If @a n is an invalid index.
1172 : *
1173 : * This function provides for safer data access. The parameter
1174 : * is first checked that it is in the range of the deque. The
1175 : * function throws out_of_range if the check fails.
1176 : */
1177 : reference
1178 : at(size_type __n)
1179 : {
1180 : _M_range_check(__n);
1181 : return (*this)[__n];
1182 : }
1183 :
1184 : /**
1185 : * @brief Provides access to the data contained in the %deque.
1186 : * @param n The index of the element for which data should be
1187 : * accessed.
1188 : * @return Read-only (constant) reference to data.
1189 : * @throw std::out_of_range If @a n is an invalid index.
1190 : *
1191 : * This function provides for safer data access. The parameter is first
1192 : * checked that it is in the range of the deque. The function throws
1193 : * out_of_range if the check fails.
1194 : */
1195 : const_reference
1196 : at(size_type __n) const
1197 : {
1198 : _M_range_check(__n);
1199 : return (*this)[__n];
1200 : }
1201 :
1202 : /**
1203 : * Returns a read/write reference to the data at the first
1204 : * element of the %deque.
1205 : */
1206 : reference
1207 1419 : front()
1208 1419 : { return *begin(); }
1209 :
1210 : /**
1211 : * Returns a read-only (constant) reference to the data at the first
1212 : * element of the %deque.
1213 : */
1214 : const_reference
1215 : front() const
1216 : { return *begin(); }
1217 :
1218 : /**
1219 : * Returns a read/write reference to the data at the last element of the
1220 : * %deque.
1221 : */
1222 : reference
1223 4257 : back()
1224 : {
1225 4257 : iterator __tmp = end();
1226 4257 : --__tmp;
1227 4257 : return *__tmp;
1228 : }
1229 :
1230 : /**
1231 : * Returns a read-only (constant) reference to the data at the last
1232 : * element of the %deque.
1233 : */
1234 : const_reference
1235 0 : back() const
1236 : {
1237 0 : const_iterator __tmp = end();
1238 0 : --__tmp;
1239 0 : return *__tmp;
1240 : }
1241 :
1242 : // [23.2.1.2] modifiers
1243 : /**
1244 : * @brief Add data to the front of the %deque.
1245 : * @param x Data to be added.
1246 : *
1247 : * This is a typical stack operation. The function creates an
1248 : * element at the front of the %deque and assigns the given
1249 : * data to it. Due to the nature of a %deque this operation
1250 : * can be done in constant time.
1251 : */
1252 : void
1253 : push_front(const value_type& __x)
1254 : {
1255 : if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1256 : {
1257 : this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1258 : --this->_M_impl._M_start._M_cur;
1259 : }
1260 : else
1261 : _M_push_front_aux(__x);
1262 : }
1263 :
1264 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1265 : void
1266 : push_front(value_type&& __x)
1267 : { emplace_front(std::move(__x)); }
1268 :
1269 : template<typename... _Args>
1270 : void
1271 : emplace_front(_Args&&... __args);
1272 : #endif
1273 :
1274 : /**
1275 : * @brief Add data to the end of the %deque.
1276 : * @param x Data to be added.
1277 : *
1278 : * This is a typical stack operation. The function creates an
1279 : * element at the end of the %deque and assigns the given data
1280 : * to it. Due to the nature of a %deque this operation can be
1281 : * done in constant time.
1282 : */
1283 : void
1284 1419 : push_back(const value_type& __x)
1285 : {
1286 1419 : if (this->_M_impl._M_finish._M_cur
1287 : != this->_M_impl._M_finish._M_last - 1)
1288 : {
1289 1419 : this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1290 1419 : ++this->_M_impl._M_finish._M_cur;
1291 : }
1292 : else
1293 0 : _M_push_back_aux(__x);
1294 1419 : }
1295 :
1296 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1297 : void
1298 4263 : push_back(value_type&& __x)
1299 4263 : { emplace_back(std::move(__x)); }
1300 :
1301 : template<typename... _Args>
1302 : void
1303 : emplace_back(_Args&&... __args);
1304 : #endif
1305 :
1306 : /**
1307 : * @brief Removes first element.
1308 : *
1309 : * This is a typical stack operation. It shrinks the %deque by one.
1310 : *
1311 : * Note that no data is returned, and if the first element's data is
1312 : * needed, it should be retrieved before pop_front() is called.
1313 : */
1314 : void
1315 1419 : pop_front()
1316 : {
1317 1419 : if (this->_M_impl._M_start._M_cur
1318 : != this->_M_impl._M_start._M_last - 1)
1319 : {
1320 1419 : this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1321 1419 : ++this->_M_impl._M_start._M_cur;
1322 : }
1323 : else
1324 0 : _M_pop_front_aux();
1325 1419 : }
1326 :
1327 : /**
1328 : * @brief Removes last element.
1329 : *
1330 : * This is a typical stack operation. It shrinks the %deque by one.
1331 : *
1332 : * Note that no data is returned, and if the last element's data is
1333 : * needed, it should be retrieved before pop_back() is called.
1334 : */
1335 : void
1336 4257 : pop_back()
1337 : {
1338 4257 : if (this->_M_impl._M_finish._M_cur
1339 : != this->_M_impl._M_finish._M_first)
1340 : {
1341 4257 : --this->_M_impl._M_finish._M_cur;
1342 4257 : this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1343 : }
1344 : else
1345 0 : _M_pop_back_aux();
1346 4257 : }
1347 :
1348 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1349 : /**
1350 : * @brief Inserts an object in %deque before specified iterator.
1351 : * @param position An iterator into the %deque.
1352 : * @param args Arguments.
1353 : * @return An iterator that points to the inserted data.
1354 : *
1355 : * This function will insert an object of type T constructed
1356 : * with T(std::forward<Args>(args)...) before the specified location.
1357 : */
1358 : template<typename... _Args>
1359 : iterator
1360 : emplace(iterator __position, _Args&&... __args);
1361 : #endif
1362 :
1363 : /**
1364 : * @brief Inserts given value into %deque before specified iterator.
1365 : * @param position An iterator into the %deque.
1366 : * @param x Data to be inserted.
1367 : * @return An iterator that points to the inserted data.
1368 : *
1369 : * This function will insert a copy of the given value before the
1370 : * specified location.
1371 : */
1372 : iterator
1373 : insert(iterator __position, const value_type& __x);
1374 :
1375 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1376 : /**
1377 : * @brief Inserts given rvalue into %deque before specified iterator.
1378 : * @param position An iterator into the %deque.
1379 : * @param x Data to be inserted.
1380 : * @return An iterator that points to the inserted data.
1381 : *
1382 : * This function will insert a copy of the given rvalue before the
1383 : * specified location.
1384 : */
1385 : iterator
1386 : insert(iterator __position, value_type&& __x)
1387 : { return emplace(__position, std::move(__x)); }
1388 :
1389 : /**
1390 : * @brief Inserts an initializer list into the %deque.
1391 : * @param p An iterator into the %deque.
1392 : * @param l An initializer_list.
1393 : *
1394 : * This function will insert copies of the data in the
1395 : * initializer_list @a l into the %deque before the location
1396 : * specified by @a p. This is known as <em>list insert</em>.
1397 : */
1398 : void
1399 : insert(iterator __p, initializer_list<value_type> __l)
1400 : { this->insert(__p, __l.begin(), __l.end()); }
1401 : #endif
1402 :
1403 : /**
1404 : * @brief Inserts a number of copies of given data into the %deque.
1405 : * @param position An iterator into the %deque.
1406 : * @param n Number of elements to be inserted.
1407 : * @param x Data to be inserted.
1408 : *
1409 : * This function will insert a specified number of copies of the given
1410 : * data before the location specified by @a position.
1411 : */
1412 : void
1413 : insert(iterator __position, size_type __n, const value_type& __x)
1414 : { _M_fill_insert(__position, __n, __x); }
1415 :
1416 : /**
1417 : * @brief Inserts a range into the %deque.
1418 : * @param position An iterator into the %deque.
1419 : * @param first An input iterator.
1420 : * @param last An input iterator.
1421 : *
1422 : * This function will insert copies of the data in the range
1423 : * [first,last) into the %deque before the location specified
1424 : * by @a pos. This is known as <em>range insert</em>.
1425 : */
1426 : template<typename _InputIterator>
1427 : void
1428 : insert(iterator __position, _InputIterator __first,
1429 : _InputIterator __last)
1430 : {
1431 : // Check whether it's an integral type. If so, it's not an iterator.
1432 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1433 : _M_insert_dispatch(__position, __first, __last, _Integral());
1434 : }
1435 :
1436 : /**
1437 : * @brief Remove element at given position.
1438 : * @param position Iterator pointing to element to be erased.
1439 : * @return An iterator pointing to the next element (or end()).
1440 : *
1441 : * This function will erase the element at the given position and thus
1442 : * shorten the %deque by one.
1443 : *
1444 : * The user is cautioned that
1445 : * this function only erases the element, and that if the element is
1446 : * itself a pointer, the pointed-to memory is not touched in any way.
1447 : * Managing the pointer is the user's responsibility.
1448 : */
1449 : iterator
1450 : erase(iterator __position);
1451 :
1452 : /**
1453 : * @brief Remove a range of elements.
1454 : * @param first Iterator pointing to the first element to be erased.
1455 : * @param last Iterator pointing to one past the last element to be
1456 : * erased.
1457 : * @return An iterator pointing to the element pointed to by @a last
1458 : * prior to erasing (or end()).
1459 : *
1460 : * This function will erase the elements in the range [first,last) and
1461 : * shorten the %deque accordingly.
1462 : *
1463 : * The user is cautioned that
1464 : * this function only erases the elements, and that if the elements
1465 : * themselves are pointers, the pointed-to memory is not touched in any
1466 : * way. Managing the pointer is the user's responsibility.
1467 : */
1468 : iterator
1469 : erase(iterator __first, iterator __last);
1470 :
1471 : /**
1472 : * @brief Swaps data with another %deque.
1473 : * @param x A %deque of the same element and allocator types.
1474 : *
1475 : * This exchanges the elements between two deques in constant time.
1476 : * (Four pointers, so it should be quite fast.)
1477 : * Note that the global std::swap() function is specialized such that
1478 : * std::swap(d1,d2) will feed to this function.
1479 : */
1480 : void
1481 1419 : swap(deque& __x)
1482 : {
1483 1419 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1484 1419 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1485 1419 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1486 1419 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1487 :
1488 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1489 : // 431. Swapping containers with unequal allocators.
1490 1419 : std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1491 : __x._M_get_Tp_allocator());
1492 1419 : }
1493 :
1494 : /**
1495 : * Erases all the elements. Note that this function only erases the
1496 : * elements, and that if the elements themselves are pointers, the
1497 : * pointed-to memory is not touched in any way. Managing the pointer is
1498 : * the user's responsibility.
1499 : */
1500 : void
1501 0 : clear()
1502 0 : { _M_erase_at_end(begin()); }
1503 :
1504 : protected:
1505 : // Internal constructor functions follow.
1506 :
1507 : // called by the range constructor to implement [23.1.1]/9
1508 :
1509 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1510 : // 438. Ambiguity in the "do the right thing" clause
1511 : template<typename _Integer>
1512 : void
1513 : _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1514 : {
1515 : _M_initialize_map(static_cast<size_type>(__n));
1516 : _M_fill_initialize(__x);
1517 : }
1518 :
1519 : // called by the range constructor to implement [23.1.1]/9
1520 : template<typename _InputIterator>
1521 : void
1522 : _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1523 : __false_type)
1524 : {
1525 : typedef typename std::iterator_traits<_InputIterator>::
1526 : iterator_category _IterCategory;
1527 : _M_range_initialize(__first, __last, _IterCategory());
1528 : }
1529 :
1530 : // called by the second initialize_dispatch above
1531 : //@{
1532 : /**
1533 : * @brief Fills the deque with whatever is in [first,last).
1534 : * @param first An input iterator.
1535 : * @param last An input iterator.
1536 : * @return Nothing.
1537 : *
1538 : * If the iterators are actually forward iterators (or better), then the
1539 : * memory layout can be done all at once. Else we move forward using
1540 : * push_back on each value from the iterator.
1541 : */
1542 : template<typename _InputIterator>
1543 : void
1544 : _M_range_initialize(_InputIterator __first, _InputIterator __last,
1545 : std::input_iterator_tag);
1546 :
1547 : // called by the second initialize_dispatch above
1548 : template<typename _ForwardIterator>
1549 : void
1550 : _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1551 : std::forward_iterator_tag);
1552 : //@}
1553 :
1554 : /**
1555 : * @brief Fills the %deque with copies of value.
1556 : * @param value Initial value.
1557 : * @return Nothing.
1558 : * @pre _M_start and _M_finish have already been initialized,
1559 : * but none of the %deque's elements have yet been constructed.
1560 : *
1561 : * This function is called only when the user provides an explicit size
1562 : * (with or without an explicit exemplar value).
1563 : */
1564 : void
1565 : _M_fill_initialize(const value_type& __value);
1566 :
1567 : // Internal assign functions follow. The *_aux functions do the actual
1568 : // assignment work for the range versions.
1569 :
1570 : // called by the range assign to implement [23.1.1]/9
1571 :
1572 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1573 : // 438. Ambiguity in the "do the right thing" clause
1574 : template<typename _Integer>
1575 : void
1576 : _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1577 : { _M_fill_assign(__n, __val); }
1578 :
1579 : // called by the range assign to implement [23.1.1]/9
1580 : template<typename _InputIterator>
1581 : void
1582 : _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1583 : __false_type)
1584 : {
1585 : typedef typename std::iterator_traits<_InputIterator>::
1586 : iterator_category _IterCategory;
1587 : _M_assign_aux(__first, __last, _IterCategory());
1588 : }
1589 :
1590 : // called by the second assign_dispatch above
1591 : template<typename _InputIterator>
1592 : void
1593 : _M_assign_aux(_InputIterator __first, _InputIterator __last,
1594 : std::input_iterator_tag);
1595 :
1596 : // called by the second assign_dispatch above
1597 : template<typename _ForwardIterator>
1598 : void
1599 : _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1600 : std::forward_iterator_tag)
1601 : {
1602 : const size_type __len = std::distance(__first, __last);
1603 : if (__len > size())
1604 : {
1605 : _ForwardIterator __mid = __first;
1606 : std::advance(__mid, size());
1607 : std::copy(__first, __mid, begin());
1608 : insert(end(), __mid, __last);
1609 : }
1610 : else
1611 : _M_erase_at_end(std::copy(__first, __last, begin()));
1612 : }
1613 :
1614 : // Called by assign(n,t), and the range assign when it turns out
1615 : // to be the same thing.
1616 : void
1617 : _M_fill_assign(size_type __n, const value_type& __val)
1618 : {
1619 : if (__n > size())
1620 : {
1621 : std::fill(begin(), end(), __val);
1622 : insert(end(), __n - size(), __val);
1623 : }
1624 : else
1625 : {
1626 : _M_erase_at_end(begin() + difference_type(__n));
1627 : std::fill(begin(), end(), __val);
1628 : }
1629 : }
1630 :
1631 : //@{
1632 : /// Helper functions for push_* and pop_*.
1633 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1634 : void _M_push_back_aux(const value_type&);
1635 :
1636 : void _M_push_front_aux(const value_type&);
1637 : #else
1638 : template<typename... _Args>
1639 : void _M_push_back_aux(_Args&&... __args);
1640 :
1641 : template<typename... _Args>
1642 : void _M_push_front_aux(_Args&&... __args);
1643 : #endif
1644 :
1645 : void _M_pop_back_aux();
1646 :
1647 : void _M_pop_front_aux();
1648 : //@}
1649 :
1650 : // Internal insert functions follow. The *_aux functions do the actual
1651 : // insertion work when all shortcuts fail.
1652 :
1653 : // called by the range insert to implement [23.1.1]/9
1654 :
1655 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1656 : // 438. Ambiguity in the "do the right thing" clause
1657 : template<typename _Integer>
1658 : void
1659 : _M_insert_dispatch(iterator __pos,
1660 : _Integer __n, _Integer __x, __true_type)
1661 : { _M_fill_insert(__pos, __n, __x); }
1662 :
1663 : // called by the range insert to implement [23.1.1]/9
1664 : template<typename _InputIterator>
1665 : void
1666 : _M_insert_dispatch(iterator __pos,
1667 : _InputIterator __first, _InputIterator __last,
1668 : __false_type)
1669 : {
1670 : typedef typename std::iterator_traits<_InputIterator>::
1671 : iterator_category _IterCategory;
1672 : _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1673 : }
1674 :
1675 : // called by the second insert_dispatch above
1676 : template<typename _InputIterator>
1677 : void
1678 : _M_range_insert_aux(iterator __pos, _InputIterator __first,
1679 : _InputIterator __last, std::input_iterator_tag);
1680 :
1681 : // called by the second insert_dispatch above
1682 : template<typename _ForwardIterator>
1683 : void
1684 : _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1685 : _ForwardIterator __last, std::forward_iterator_tag);
1686 :
1687 : // Called by insert(p,n,x), and the range insert when it turns out to be
1688 : // the same thing. Can use fill functions in optimal situations,
1689 : // otherwise passes off to insert_aux(p,n,x).
1690 : void
1691 : _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1692 :
1693 : // called by insert(p,x)
1694 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1695 : iterator
1696 : _M_insert_aux(iterator __pos, const value_type& __x);
1697 : #else
1698 : template<typename... _Args>
1699 : iterator
1700 : _M_insert_aux(iterator __pos, _Args&&... __args);
1701 : #endif
1702 :
1703 : // called by insert(p,n,x) via fill_insert
1704 : void
1705 : _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1706 :
1707 : // called by range_insert_aux for forward iterators
1708 : template<typename _ForwardIterator>
1709 : void
1710 : _M_insert_aux(iterator __pos,
1711 : _ForwardIterator __first, _ForwardIterator __last,
1712 : size_type __n);
1713 :
1714 :
1715 : // Internal erase functions follow.
1716 :
1717 : void
1718 : _M_destroy_data_aux(iterator __first, iterator __last);
1719 :
1720 : // Called by ~deque().
1721 : // NB: Doesn't deallocate the nodes.
1722 : template<typename _Alloc1>
1723 : void
1724 : _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1725 : { _M_destroy_data_aux(__first, __last); }
1726 :
1727 : void
1728 29423 : _M_destroy_data(iterator __first, iterator __last,
1729 : const std::allocator<_Tp>&)
1730 : {
1731 : if (!__has_trivial_destructor(value_type))
1732 3 : _M_destroy_data_aux(__first, __last);
1733 29423 : }
1734 :
1735 : // Called by erase(q1, q2).
1736 : void
1737 : _M_erase_at_begin(iterator __pos)
1738 : {
1739 : _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1740 : _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1741 : this->_M_impl._M_start = __pos;
1742 : }
1743 :
1744 : // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1745 : // _M_fill_assign, operator=.
1746 : void
1747 0 : _M_erase_at_end(iterator __pos)
1748 : {
1749 0 : _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1750 0 : _M_destroy_nodes(__pos._M_node + 1,
1751 : this->_M_impl._M_finish._M_node + 1);
1752 0 : this->_M_impl._M_finish = __pos;
1753 0 : }
1754 :
1755 : //@{
1756 : /// Memory-handling helpers for the previous internal insert functions.
1757 : iterator
1758 : _M_reserve_elements_at_front(size_type __n)
1759 : {
1760 : const size_type __vacancies = this->_M_impl._M_start._M_cur
1761 : - this->_M_impl._M_start._M_first;
1762 : if (__n > __vacancies)
1763 : _M_new_elements_at_front(__n - __vacancies);
1764 : return this->_M_impl._M_start - difference_type(__n);
1765 : }
1766 :
1767 : iterator
1768 : _M_reserve_elements_at_back(size_type __n)
1769 : {
1770 : const size_type __vacancies = (this->_M_impl._M_finish._M_last
1771 : - this->_M_impl._M_finish._M_cur) - 1;
1772 : if (__n > __vacancies)
1773 : _M_new_elements_at_back(__n - __vacancies);
1774 : return this->_M_impl._M_finish + difference_type(__n);
1775 : }
1776 :
1777 : void
1778 : _M_new_elements_at_front(size_type __new_elements);
1779 :
1780 : void
1781 : _M_new_elements_at_back(size_type __new_elements);
1782 : //@}
1783 :
1784 :
1785 : //@{
1786 : /**
1787 : * @brief Memory-handling helpers for the major %map.
1788 : *
1789 : * Makes sure the _M_map has space for new nodes. Does not
1790 : * actually add the nodes. Can invalidate _M_map pointers.
1791 : * (And consequently, %deque iterators.)
1792 : */
1793 : void
1794 0 : _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1795 : {
1796 0 : if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1797 : - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1798 0 : _M_reallocate_map(__nodes_to_add, false);
1799 0 : }
1800 :
1801 : void
1802 : _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1803 : {
1804 : if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1805 : - this->_M_impl._M_map))
1806 : _M_reallocate_map(__nodes_to_add, true);
1807 : }
1808 :
1809 : void
1810 : _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1811 : //@}
1812 : };
1813 :
1814 :
1815 : /**
1816 : * @brief Deque equality comparison.
1817 : * @param x A %deque.
1818 : * @param y A %deque of the same type as @a x.
1819 : * @return True iff the size and elements of the deques are equal.
1820 : *
1821 : * This is an equivalence relation. It is linear in the size of the
1822 : * deques. Deques are considered equivalent if their sizes are equal,
1823 : * and if corresponding elements compare equal.
1824 : */
1825 : template<typename _Tp, typename _Alloc>
1826 : inline bool
1827 : operator==(const deque<_Tp, _Alloc>& __x,
1828 : const deque<_Tp, _Alloc>& __y)
1829 : { return __x.size() == __y.size()
1830 : && std::equal(__x.begin(), __x.end(), __y.begin()); }
1831 :
1832 : /**
1833 : * @brief Deque ordering relation.
1834 : * @param x A %deque.
1835 : * @param y A %deque of the same type as @a x.
1836 : * @return True iff @a x is lexicographically less than @a y.
1837 : *
1838 : * This is a total ordering relation. It is linear in the size of the
1839 : * deques. The elements must be comparable with @c <.
1840 : *
1841 : * See std::lexicographical_compare() for how the determination is made.
1842 : */
1843 : template<typename _Tp, typename _Alloc>
1844 : inline bool
1845 : operator<(const deque<_Tp, _Alloc>& __x,
1846 : const deque<_Tp, _Alloc>& __y)
1847 : { return std::lexicographical_compare(__x.begin(), __x.end(),
1848 : __y.begin(), __y.end()); }
1849 :
1850 : /// Based on operator==
1851 : template<typename _Tp, typename _Alloc>
1852 : inline bool
1853 : operator!=(const deque<_Tp, _Alloc>& __x,
1854 : const deque<_Tp, _Alloc>& __y)
1855 : { return !(__x == __y); }
1856 :
1857 : /// Based on operator<
1858 : template<typename _Tp, typename _Alloc>
1859 : inline bool
1860 : operator>(const deque<_Tp, _Alloc>& __x,
1861 : const deque<_Tp, _Alloc>& __y)
1862 : { return __y < __x; }
1863 :
1864 : /// Based on operator<
1865 : template<typename _Tp, typename _Alloc>
1866 : inline bool
1867 : operator<=(const deque<_Tp, _Alloc>& __x,
1868 : const deque<_Tp, _Alloc>& __y)
1869 : { return !(__y < __x); }
1870 :
1871 : /// Based on operator<
1872 : template<typename _Tp, typename _Alloc>
1873 : inline bool
1874 : operator>=(const deque<_Tp, _Alloc>& __x,
1875 : const deque<_Tp, _Alloc>& __y)
1876 : { return !(__x < __y); }
1877 :
1878 : /// See std::deque::swap().
1879 : template<typename _Tp, typename _Alloc>
1880 : inline void
1881 : swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1882 : { __x.swap(__y); }
1883 :
1884 : #undef _GLIBCXX_DEQUE_BUF_SIZE
1885 :
1886 : _GLIBCXX_END_NESTED_NAMESPACE
1887 :
1888 : #endif /* _STL_DEQUE_H */
|