1 : // Set implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 3, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // Under Section 7 of GPL version 3, you are granted additional
18 : // permissions described in the GCC Runtime Library Exception, version
19 : // 3.1, as published by the Free Software Foundation.
20 :
21 : // You should have received a copy of the GNU General Public License and
22 : // a copy of the GCC Runtime Library Exception along with this program;
23 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 : // <http://www.gnu.org/licenses/>.
25 :
26 : /*
27 : *
28 : * Copyright (c) 1994
29 : * Hewlett-Packard Company
30 : *
31 : * Permission to use, copy, modify, distribute and sell this software
32 : * and its documentation for any purpose is hereby granted without fee,
33 : * provided that the above copyright notice appear in all copies and
34 : * that both that copyright notice and this permission notice appear
35 : * in supporting documentation. Hewlett-Packard Company makes no
36 : * representations about the suitability of this software for any
37 : * purpose. It is provided "as is" without express or implied warranty.
38 : *
39 : *
40 : * Copyright (c) 1996,1997
41 : * Silicon Graphics Computer Systems, Inc.
42 : *
43 : * Permission to use, copy, modify, distribute and sell this software
44 : * and its documentation for any purpose is hereby granted without fee,
45 : * provided that the above copyright notice appear in all copies and
46 : * that both that copyright notice and this permission notice appear
47 : * in supporting documentation. Silicon Graphics makes no
48 : * representations about the suitability of this software for any
49 : * purpose. It is provided "as is" without express or implied warranty.
50 : */
51 :
52 : /** @file stl_set.h
53 : * This is an internal header file, included by other library headers.
54 : * You should not attempt to use it directly.
55 : */
56 :
57 : #ifndef _STL_SET_H
58 : #define _STL_SET_H 1
59 :
60 : #include <bits/concept_check.h>
61 : #include <initializer_list>
62 :
63 : _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
64 :
65 : /**
66 : * @brief A standard container made up of unique keys, which can be
67 : * retrieved in logarithmic time.
68 : *
69 : * @ingroup associative_containers
70 : *
71 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
72 : * <a href="tables.html#66">reversible container</a>, and an
73 : * <a href="tables.html#69">associative container</a> (using unique keys).
74 : *
75 : * Sets support bidirectional iterators.
76 : *
77 : * @param Key Type of key objects.
78 : * @param Compare Comparison function object type, defaults to less<Key>.
79 : * @param Alloc Allocator type, defaults to allocator<Key>.
80 : *
81 : * The private tree data is declared exactly the same way for set and
82 : * multiset; the distinction is made entirely in how the tree functions are
83 : * called (*_unique versus *_equal, same as the standard).
84 : */
85 : template<typename _Key, typename _Compare = std::less<_Key>,
86 : typename _Alloc = std::allocator<_Key> >
87 : class set
88 620 : {
89 : // concept requirements
90 : typedef typename _Alloc::value_type _Alloc_value_type;
91 : __glibcxx_class_requires(_Key, _SGIAssignableConcept)
92 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
93 : _BinaryFunctionConcept)
94 : __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
95 :
96 : public:
97 : // typedefs:
98 : //@{
99 : /// Public typedefs.
100 : typedef _Key key_type;
101 : typedef _Key value_type;
102 : typedef _Compare key_compare;
103 : typedef _Compare value_compare;
104 : typedef _Alloc allocator_type;
105 : //@}
106 :
107 : private:
108 : typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
109 :
110 : typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
111 : key_compare, _Key_alloc_type> _Rep_type;
112 : _Rep_type _M_t; // Red-black tree representing set.
113 :
114 : public:
115 : //@{
116 : /// Iterator-related typedefs.
117 : typedef typename _Key_alloc_type::pointer pointer;
118 : typedef typename _Key_alloc_type::const_pointer const_pointer;
119 : typedef typename _Key_alloc_type::reference reference;
120 : typedef typename _Key_alloc_type::const_reference const_reference;
121 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
122 : // DR 103. set::iterator is required to be modifiable,
123 : // but this allows modification of keys.
124 : typedef typename _Rep_type::const_iterator iterator;
125 : typedef typename _Rep_type::const_iterator const_iterator;
126 : typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
127 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
128 : typedef typename _Rep_type::size_type size_type;
129 : typedef typename _Rep_type::difference_type difference_type;
130 : //@}
131 :
132 : // allocation/deallocation
133 : /**
134 : * @brief Default constructor creates no elements.
135 : */
136 620 : set()
137 620 : : _M_t() { }
138 :
139 : /**
140 : * @brief Creates a %set with no elements.
141 : * @param comp Comparator to use.
142 : * @param a An allocator object.
143 : */
144 : explicit
145 : set(const _Compare& __comp,
146 : const allocator_type& __a = allocator_type())
147 : : _M_t(__comp, __a) { }
148 :
149 : /**
150 : * @brief Builds a %set from a range.
151 : * @param first An input iterator.
152 : * @param last An input iterator.
153 : *
154 : * Create a %set consisting of copies of the elements from [first,last).
155 : * This is linear in N if the range is already sorted, and NlogN
156 : * otherwise (where N is distance(first,last)).
157 : */
158 : template<typename _InputIterator>
159 : set(_InputIterator __first, _InputIterator __last)
160 : : _M_t()
161 : { _M_t._M_insert_unique(__first, __last); }
162 :
163 : /**
164 : * @brief Builds a %set from a range.
165 : * @param first An input iterator.
166 : * @param last An input iterator.
167 : * @param comp A comparison functor.
168 : * @param a An allocator object.
169 : *
170 : * Create a %set consisting of copies of the elements from [first,last).
171 : * This is linear in N if the range is already sorted, and NlogN
172 : * otherwise (where N is distance(first,last)).
173 : */
174 : template<typename _InputIterator>
175 : set(_InputIterator __first, _InputIterator __last,
176 : const _Compare& __comp,
177 : const allocator_type& __a = allocator_type())
178 : : _M_t(__comp, __a)
179 : { _M_t._M_insert_unique(__first, __last); }
180 :
181 : /**
182 : * @brief %Set copy constructor.
183 : * @param x A %set of identical element and allocator types.
184 : *
185 : * The newly-created %set uses a copy of the allocation object used
186 : * by @a x.
187 : */
188 : set(const set& __x)
189 : : _M_t(__x._M_t) { }
190 :
191 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
192 : /**
193 : * @brief %Set move constructor
194 : * @param x A %set of identical element and allocator types.
195 : *
196 : * The newly-created %set contains the exact contents of @a x.
197 : * The contents of @a x are a valid, but unspecified %set.
198 : */
199 : set(set&& __x)
200 : : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
201 :
202 : /**
203 : * @brief Builds a %set from an initializer_list.
204 : * @param l An initializer_list.
205 : * @param comp A comparison functor.
206 : * @param a An allocator object.
207 : *
208 : * Create a %set consisting of copies of the elements in the list.
209 : * This is linear in N if the list is already sorted, and NlogN
210 : * otherwise (where N is @a l.size()).
211 : */
212 : set(initializer_list<value_type> __l,
213 : const _Compare& __comp = _Compare(),
214 : const allocator_type& __a = allocator_type())
215 : : _M_t(__comp, __a)
216 : { _M_t._M_insert_unique(__l.begin(), __l.end()); }
217 : #endif
218 :
219 : /**
220 : * @brief %Set assignment operator.
221 : * @param x A %set of identical element and allocator types.
222 : *
223 : * All the elements of @a x are copied, but unlike the copy constructor,
224 : * the allocator object is not copied.
225 : */
226 : set&
227 : operator=(const set& __x)
228 : {
229 : _M_t = __x._M_t;
230 : return *this;
231 : }
232 :
233 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
234 : /**
235 : * @brief %Set move assignment operator.
236 : * @param x A %set of identical element and allocator types.
237 : *
238 : * The contents of @a x are moved into this %set (without copying).
239 : * @a x is a valid, but unspecified %set.
240 : */
241 : set&
242 : operator=(set&& __x)
243 : {
244 : // NB: DR 1204.
245 : // NB: DR 675.
246 : this->clear();
247 : this->swap(__x);
248 : return *this;
249 : }
250 :
251 : /**
252 : * @brief %Set list assignment operator.
253 : * @param l An initializer_list.
254 : *
255 : * This function fills a %set with copies of the elements in the
256 : * initializer list @a l.
257 : *
258 : * Note that the assignment completely changes the %set and
259 : * that the resulting %set's size is the same as the number
260 : * of elements assigned. Old data may be lost.
261 : */
262 : set&
263 : operator=(initializer_list<value_type> __l)
264 : {
265 : this->clear();
266 : this->insert(__l.begin(), __l.end());
267 : return *this;
268 : }
269 : #endif
270 :
271 : // accessors:
272 :
273 : /// Returns the comparison object with which the %set was constructed.
274 : key_compare
275 : key_comp() const
276 : { return _M_t.key_comp(); }
277 : /// Returns the comparison object with which the %set was constructed.
278 : value_compare
279 : value_comp() const
280 : { return _M_t.key_comp(); }
281 : /// Returns the allocator object with which the %set was constructed.
282 : allocator_type
283 : get_allocator() const
284 : { return _M_t.get_allocator(); }
285 :
286 : /**
287 : * Returns a read-only (constant) iterator that points to the first
288 : * element in the %set. Iteration is done in ascending order according
289 : * to the keys.
290 : */
291 : iterator
292 372 : begin() const
293 372 : { return _M_t.begin(); }
294 :
295 : /**
296 : * Returns a read-only (constant) iterator that points one past the last
297 : * element in the %set. Iteration is done in ascending order according
298 : * to the keys.
299 : */
300 : iterator
301 909054 : end() const
302 909054 : { return _M_t.end(); }
303 :
304 : /**
305 : * Returns a read-only (constant) iterator that points to the last
306 : * element in the %set. Iteration is done in descending order according
307 : * to the keys.
308 : */
309 : reverse_iterator
310 : rbegin() const
311 : { return _M_t.rbegin(); }
312 :
313 : /**
314 : * Returns a read-only (constant) reverse iterator that points to the
315 : * last pair in the %set. Iteration is done in descending order
316 : * according to the keys.
317 : */
318 : reverse_iterator
319 : rend() const
320 : { return _M_t.rend(); }
321 :
322 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
323 : /**
324 : * Returns a read-only (constant) iterator that points to the first
325 : * element in the %set. Iteration is done in ascending order according
326 : * to the keys.
327 : */
328 : iterator
329 : cbegin() const
330 : { return _M_t.begin(); }
331 :
332 : /**
333 : * Returns a read-only (constant) iterator that points one past the last
334 : * element in the %set. Iteration is done in ascending order according
335 : * to the keys.
336 : */
337 : iterator
338 : cend() const
339 : { return _M_t.end(); }
340 :
341 : /**
342 : * Returns a read-only (constant) iterator that points to the last
343 : * element in the %set. Iteration is done in descending order according
344 : * to the keys.
345 : */
346 : reverse_iterator
347 : crbegin() const
348 : { return _M_t.rbegin(); }
349 :
350 : /**
351 : * Returns a read-only (constant) reverse iterator that points to the
352 : * last pair in the %set. Iteration is done in descending order
353 : * according to the keys.
354 : */
355 : reverse_iterator
356 : crend() const
357 : { return _M_t.rend(); }
358 : #endif
359 :
360 : /// Returns true if the %set is empty.
361 : bool
362 0 : empty() const
363 0 : { return _M_t.empty(); }
364 :
365 : /// Returns the size of the %set.
366 : size_type
367 : size() const
368 : { return _M_t.size(); }
369 :
370 : /// Returns the maximum size of the %set.
371 : size_type
372 : max_size() const
373 : { return _M_t.max_size(); }
374 :
375 : /**
376 : * @brief Swaps data with another %set.
377 : * @param x A %set of the same element and allocator types.
378 : *
379 : * This exchanges the elements between two sets in constant time.
380 : * (It is only swapping a pointer, an integer, and an instance of
381 : * the @c Compare type (which itself is often stateless and empty), so it
382 : * should be quite fast.)
383 : * Note that the global std::swap() function is specialized such that
384 : * std::swap(s1,s2) will feed to this function.
385 : */
386 : void
387 : swap(set& __x)
388 : { _M_t.swap(__x._M_t); }
389 :
390 : // insert/erase
391 : /**
392 : * @brief Attempts to insert an element into the %set.
393 : * @param x Element to be inserted.
394 : * @return A pair, of which the first element is an iterator that points
395 : * to the possibly inserted element, and the second is a bool
396 : * that is true if the element was actually inserted.
397 : *
398 : * This function attempts to insert an element into the %set. A %set
399 : * relies on unique keys and thus an element is only inserted if it is
400 : * not already present in the %set.
401 : *
402 : * Insertion requires logarithmic time.
403 : */
404 : std::pair<iterator, bool>
405 13476969 : insert(const value_type& __x)
406 : {
407 : std::pair<typename _Rep_type::iterator, bool> __p =
408 13476969 : _M_t._M_insert_unique(__x);
409 13476969 : return std::pair<iterator, bool>(__p.first, __p.second);
410 : }
411 :
412 : /**
413 : * @brief Attempts to insert an element into the %set.
414 : * @param position An iterator that serves as a hint as to where the
415 : * element should be inserted.
416 : * @param x Element to be inserted.
417 : * @return An iterator that points to the element with key of @a x (may
418 : * or may not be the element passed in).
419 : *
420 : * This function is not concerned about whether the insertion took place,
421 : * and thus does not return a boolean like the single-argument insert()
422 : * does. Note that the first parameter is only a hint and can
423 : * potentially improve the performance of the insertion process. A bad
424 : * hint would cause no gains in efficiency.
425 : *
426 : * For more on @a hinting, see:
427 : * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
428 : *
429 : * Insertion requires logarithmic time (if the hint is not taken).
430 : */
431 : iterator
432 : insert(iterator __position, const value_type& __x)
433 : { return _M_t._M_insert_unique_(__position, __x); }
434 :
435 : /**
436 : * @brief A template function that attempts to insert a range
437 : * of elements.
438 : * @param first Iterator pointing to the start of the range to be
439 : * inserted.
440 : * @param last Iterator pointing to the end of the range.
441 : *
442 : * Complexity similar to that of the range constructor.
443 : */
444 : template<typename _InputIterator>
445 : void
446 : insert(_InputIterator __first, _InputIterator __last)
447 : { _M_t._M_insert_unique(__first, __last); }
448 :
449 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
450 : /**
451 : * @brief Attempts to insert a list of elements into the %set.
452 : * @param list A std::initializer_list<value_type> of elements
453 : * to be inserted.
454 : *
455 : * Complexity similar to that of the range constructor.
456 : */
457 : void
458 : insert(initializer_list<value_type> __l)
459 : { this->insert(__l.begin(), __l.end()); }
460 : #endif
461 :
462 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
463 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
464 : // DR 130. Associative erase should return an iterator.
465 : /**
466 : * @brief Erases an element from a %set.
467 : * @param position An iterator pointing to the element to be erased.
468 : * @return An iterator pointing to the element immediately following
469 : * @a position prior to the element being erased. If no such
470 : * element exists, end() is returned.
471 : *
472 : * This function erases an element, pointed to by the given iterator,
473 : * from a %set. Note that this function only erases the element, and
474 : * that if the element is itself a pointer, the pointed-to memory is not
475 : * touched in any way. Managing the pointer is the user's responsibility.
476 : */
477 : iterator
478 : erase(iterator __position)
479 : { return _M_t.erase(__position); }
480 : #else
481 : /**
482 : * @brief Erases an element from a %set.
483 : * @param position An iterator pointing to the element to be erased.
484 : *
485 : * This function erases an element, pointed to by the given iterator,
486 : * from a %set. Note that this function only erases the element, and
487 : * that if the element is itself a pointer, the pointed-to memory is not
488 : * touched in any way. Managing the pointer is the user's responsibility.
489 : */
490 : void
491 : erase(iterator __position)
492 : { _M_t.erase(__position); }
493 : #endif
494 :
495 : /**
496 : * @brief Erases elements according to the provided key.
497 : * @param x Key of element to be erased.
498 : * @return The number of elements erased.
499 : *
500 : * This function erases all the elements located by the given key from
501 : * a %set.
502 : * Note that this function only erases the element, and that if
503 : * the element is itself a pointer, the pointed-to memory is not touched
504 : * in any way. Managing the pointer is the user's responsibility.
505 : */
506 : size_type
507 : erase(const key_type& __x)
508 : { return _M_t.erase(__x); }
509 :
510 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
511 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
512 : // DR 130. Associative erase should return an iterator.
513 : /**
514 : * @brief Erases a [first,last) range of elements from a %set.
515 : * @param first Iterator pointing to the start of the range to be
516 : * erased.
517 : * @param last Iterator pointing to the end of the range to be erased.
518 : * @return The iterator @a last.
519 : *
520 : * This function erases a sequence of elements from a %set.
521 : * Note that this function only erases the element, and that if
522 : * the element is itself a pointer, the pointed-to memory is not touched
523 : * in any way. Managing the pointer is the user's responsibility.
524 : */
525 : iterator
526 : erase(iterator __first, iterator __last)
527 : { return _M_t.erase(__first, __last); }
528 : #else
529 : /**
530 : * @brief Erases a [first,last) range of elements from a %set.
531 : * @param first Iterator pointing to the start of the range to be
532 : * erased.
533 : * @param last Iterator pointing to the end of the range to be erased.
534 : *
535 : * This function erases a sequence of elements from a %set.
536 : * Note that this function only erases the element, and that if
537 : * the element is itself a pointer, the pointed-to memory is not touched
538 : * in any way. Managing the pointer is the user's responsibility.
539 : */
540 : void
541 : erase(iterator __first, iterator __last)
542 : { _M_t.erase(__first, __last); }
543 : #endif
544 :
545 : /**
546 : * Erases all elements in a %set. Note that this function only erases
547 : * the elements, and that if the elements themselves are pointers, the
548 : * pointed-to memory is not touched in any way. Managing the pointer is
549 : * the user's responsibility.
550 : */
551 : void
552 0 : clear()
553 0 : { _M_t.clear(); }
554 :
555 : // set operations:
556 :
557 : /**
558 : * @brief Finds the number of elements.
559 : * @param x Element to located.
560 : * @return Number of elements with specified key.
561 : *
562 : * This function only makes sense for multisets; for set the result will
563 : * either be 0 (not present) or 1 (present).
564 : */
565 : size_type
566 372 : count(const key_type& __x) const
567 372 : { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
568 :
569 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
570 : // 214. set::find() missing const overload
571 : //@{
572 : /**
573 : * @brief Tries to locate an element in a %set.
574 : * @param x Element to be located.
575 : * @return Iterator pointing to sought-after element, or end() if not
576 : * found.
577 : *
578 : * This function takes a key and tries to locate the element with which
579 : * the key matches. If successful the function returns an iterator
580 : * pointing to the sought after element. If unsuccessful it returns the
581 : * past-the-end ( @c end() ) iterator.
582 : */
583 : iterator
584 0 : find(const key_type& __x)
585 0 : { return _M_t.find(__x); }
586 :
587 : const_iterator
588 : find(const key_type& __x) const
589 : { return _M_t.find(__x); }
590 : //@}
591 :
592 : //@{
593 : /**
594 : * @brief Finds the beginning of a subsequence matching given key.
595 : * @param x Key to be located.
596 : * @return Iterator pointing to first element equal to or greater
597 : * than key, or end().
598 : *
599 : * This function returns the first element of a subsequence of elements
600 : * that matches the given key. If unsuccessful it returns an iterator
601 : * pointing to the first element that has a greater value than given key
602 : * or end() if no such element exists.
603 : */
604 : iterator
605 : lower_bound(const key_type& __x)
606 : { return _M_t.lower_bound(__x); }
607 :
608 : const_iterator
609 : lower_bound(const key_type& __x) const
610 : { return _M_t.lower_bound(__x); }
611 : //@}
612 :
613 : //@{
614 : /**
615 : * @brief Finds the end of a subsequence matching given key.
616 : * @param x Key to be located.
617 : * @return Iterator pointing to the first element
618 : * greater than key, or end().
619 : */
620 : iterator
621 : upper_bound(const key_type& __x)
622 : { return _M_t.upper_bound(__x); }
623 :
624 : const_iterator
625 : upper_bound(const key_type& __x) const
626 : { return _M_t.upper_bound(__x); }
627 : //@}
628 :
629 : //@{
630 : /**
631 : * @brief Finds a subsequence matching given key.
632 : * @param x Key to be located.
633 : * @return Pair of iterators that possibly points to the subsequence
634 : * matching given key.
635 : *
636 : * This function is equivalent to
637 : * @code
638 : * std::make_pair(c.lower_bound(val),
639 : * c.upper_bound(val))
640 : * @endcode
641 : * (but is faster than making the calls separately).
642 : *
643 : * This function probably only makes sense for multisets.
644 : */
645 : std::pair<iterator, iterator>
646 : equal_range(const key_type& __x)
647 : { return _M_t.equal_range(__x); }
648 :
649 : std::pair<const_iterator, const_iterator>
650 : equal_range(const key_type& __x) const
651 : { return _M_t.equal_range(__x); }
652 : //@}
653 :
654 : template<typename _K1, typename _C1, typename _A1>
655 : friend bool
656 : operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
657 :
658 : template<typename _K1, typename _C1, typename _A1>
659 : friend bool
660 : operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
661 : };
662 :
663 :
664 : /**
665 : * @brief Set equality comparison.
666 : * @param x A %set.
667 : * @param y A %set of the same type as @a x.
668 : * @return True iff the size and elements of the sets are equal.
669 : *
670 : * This is an equivalence relation. It is linear in the size of the sets.
671 : * Sets are considered equivalent if their sizes are equal, and if
672 : * corresponding elements compare equal.
673 : */
674 : template<typename _Key, typename _Compare, typename _Alloc>
675 : inline bool
676 : operator==(const set<_Key, _Compare, _Alloc>& __x,
677 : const set<_Key, _Compare, _Alloc>& __y)
678 : { return __x._M_t == __y._M_t; }
679 :
680 : /**
681 : * @brief Set ordering relation.
682 : * @param x A %set.
683 : * @param y A %set of the same type as @a x.
684 : * @return True iff @a x is lexicographically less than @a y.
685 : *
686 : * This is a total ordering relation. It is linear in the size of the
687 : * maps. The elements must be comparable with @c <.
688 : *
689 : * See std::lexicographical_compare() for how the determination is made.
690 : */
691 : template<typename _Key, typename _Compare, typename _Alloc>
692 : inline bool
693 : operator<(const set<_Key, _Compare, _Alloc>& __x,
694 : const set<_Key, _Compare, _Alloc>& __y)
695 : { return __x._M_t < __y._M_t; }
696 :
697 : /// Returns !(x == y).
698 : template<typename _Key, typename _Compare, typename _Alloc>
699 : inline bool
700 : operator!=(const set<_Key, _Compare, _Alloc>& __x,
701 : const set<_Key, _Compare, _Alloc>& __y)
702 : { return !(__x == __y); }
703 :
704 : /// Returns y < x.
705 : template<typename _Key, typename _Compare, typename _Alloc>
706 : inline bool
707 : operator>(const set<_Key, _Compare, _Alloc>& __x,
708 : const set<_Key, _Compare, _Alloc>& __y)
709 : { return __y < __x; }
710 :
711 : /// Returns !(y < x)
712 : template<typename _Key, typename _Compare, typename _Alloc>
713 : inline bool
714 : operator<=(const set<_Key, _Compare, _Alloc>& __x,
715 : const set<_Key, _Compare, _Alloc>& __y)
716 : { return !(__y < __x); }
717 :
718 : /// Returns !(x < y)
719 : template<typename _Key, typename _Compare, typename _Alloc>
720 : inline bool
721 : operator>=(const set<_Key, _Compare, _Alloc>& __x,
722 : const set<_Key, _Compare, _Alloc>& __y)
723 : { return !(__x < __y); }
724 :
725 : /// See std::set::swap().
726 : template<typename _Key, typename _Compare, typename _Alloc>
727 : inline void
728 : swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
729 : { __x.swap(__y); }
730 :
731 : _GLIBCXX_END_NESTED_NAMESPACE
732 :
733 : #endif /* _STL_SET_H */
|