1 : // Map implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 3, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // Under Section 7 of GPL version 3, you are granted additional
18 : // permissions described in the GCC Runtime Library Exception, version
19 : // 3.1, as published by the Free Software Foundation.
20 :
21 : // You should have received a copy of the GNU General Public License and
22 : // a copy of the GCC Runtime Library Exception along with this program;
23 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 : // <http://www.gnu.org/licenses/>.
25 :
26 : /*
27 : *
28 : * Copyright (c) 1994
29 : * Hewlett-Packard Company
30 : *
31 : * Permission to use, copy, modify, distribute and sell this software
32 : * and its documentation for any purpose is hereby granted without fee,
33 : * provided that the above copyright notice appear in all copies and
34 : * that both that copyright notice and this permission notice appear
35 : * in supporting documentation. Hewlett-Packard Company makes no
36 : * representations about the suitability of this software for any
37 : * purpose. It is provided "as is" without express or implied warranty.
38 : *
39 : *
40 : * Copyright (c) 1996,1997
41 : * Silicon Graphics Computer Systems, Inc.
42 : *
43 : * Permission to use, copy, modify, distribute and sell this software
44 : * and its documentation for any purpose is hereby granted without fee,
45 : * provided that the above copyright notice appear in all copies and
46 : * that both that copyright notice and this permission notice appear
47 : * in supporting documentation. Silicon Graphics makes no
48 : * representations about the suitability of this software for any
49 : * purpose. It is provided "as is" without express or implied warranty.
50 : */
51 :
52 : /** @file stl_map.h
53 : * This is an internal header file, included by other library headers.
54 : * You should not attempt to use it directly.
55 : */
56 :
57 : #ifndef _STL_MAP_H
58 : #define _STL_MAP_H 1
59 :
60 : #include <bits/functexcept.h>
61 : #include <bits/concept_check.h>
62 : #include <initializer_list>
63 :
64 : _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
65 :
66 : /**
67 : * @brief A standard container made up of (key,value) pairs, which can be
68 : * retrieved based on a key, in logarithmic time.
69 : *
70 : * @ingroup associative_containers
71 : *
72 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
73 : * <a href="tables.html#66">reversible container</a>, and an
74 : * <a href="tables.html#69">associative container</a> (using unique keys).
75 : * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
76 : * value_type is std::pair<const Key,T>.
77 : *
78 : * Maps support bidirectional iterators.
79 : *
80 : * The private tree data is declared exactly the same way for map and
81 : * multimap; the distinction is made entirely in how the tree functions are
82 : * called (*_unique versus *_equal, same as the standard).
83 : */
84 : template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
85 : typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
86 : class map
87 11915270 : {
88 : public:
89 : typedef _Key key_type;
90 : typedef _Tp mapped_type;
91 : typedef std::pair<const _Key, _Tp> value_type;
92 : typedef _Compare key_compare;
93 : typedef _Alloc allocator_type;
94 :
95 : private:
96 : // concept requirements
97 : typedef typename _Alloc::value_type _Alloc_value_type;
98 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
99 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
100 : _BinaryFunctionConcept)
101 : __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
102 :
103 : public:
104 : class value_compare
105 : : public std::binary_function<value_type, value_type, bool>
106 : {
107 : friend class map<_Key, _Tp, _Compare, _Alloc>;
108 : protected:
109 : _Compare comp;
110 :
111 : value_compare(_Compare __c)
112 : : comp(__c) { }
113 :
114 : public:
115 : bool operator()(const value_type& __x, const value_type& __y) const
116 : { return comp(__x.first, __y.first); }
117 : };
118 :
119 : private:
120 : /// This turns a red-black tree into a [multi]map.
121 : typedef typename _Alloc::template rebind<value_type>::other
122 : _Pair_alloc_type;
123 :
124 : typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
125 : key_compare, _Pair_alloc_type> _Rep_type;
126 :
127 : /// The actual tree structure.
128 : _Rep_type _M_t;
129 :
130 : public:
131 : // many of these are specified differently in ISO, but the following are
132 : // "functionally equivalent"
133 : typedef typename _Pair_alloc_type::pointer pointer;
134 : typedef typename _Pair_alloc_type::const_pointer const_pointer;
135 : typedef typename _Pair_alloc_type::reference reference;
136 : typedef typename _Pair_alloc_type::const_reference const_reference;
137 : typedef typename _Rep_type::iterator iterator;
138 : typedef typename _Rep_type::const_iterator const_iterator;
139 : typedef typename _Rep_type::size_type size_type;
140 : typedef typename _Rep_type::difference_type difference_type;
141 : typedef typename _Rep_type::reverse_iterator reverse_iterator;
142 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
143 :
144 : // [23.3.1.1] construct/copy/destroy
145 : // (get_allocator() is normally listed in this section, but seems to have
146 : // been accidentally omitted in the printed standard)
147 : /**
148 : * @brief Default constructor creates no elements.
149 : */
150 4956910 : map()
151 4956910 : : _M_t() { }
152 :
153 : /**
154 : * @brief Creates a %map with no elements.
155 : * @param comp A comparison object.
156 : * @param a An allocator object.
157 : */
158 : explicit
159 : map(const _Compare& __comp,
160 : const allocator_type& __a = allocator_type())
161 : : _M_t(__comp, __a) { }
162 :
163 : /**
164 : * @brief %Map copy constructor.
165 : * @param x A %map of identical element and allocator types.
166 : *
167 : * The newly-created %map uses a copy of the allocation object
168 : * used by @a x.
169 : */
170 3547950 : map(const map& __x)
171 3547950 : : _M_t(__x._M_t) { }
172 :
173 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
174 : /**
175 : * @brief %Map move constructor.
176 : * @param x A %map of identical element and allocator types.
177 : *
178 : * The newly-created %map contains the exact contents of @a x.
179 : * The contents of @a x are a valid, but unspecified %map.
180 : */
181 3423078 : map(map&& __x)
182 3423078 : : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
183 :
184 : /**
185 : * @brief Builds a %map from an initializer_list.
186 : * @param l An initializer_list.
187 : * @param comp A comparison object.
188 : * @param a An allocator object.
189 : *
190 : * Create a %map consisting of copies of the elements in the
191 : * initializer_list @a l.
192 : * This is linear in N if the range is already sorted, and NlogN
193 : * otherwise (where N is @a l.size()).
194 : */
195 : map(initializer_list<value_type> __l,
196 : const _Compare& __c = _Compare(),
197 : const allocator_type& __a = allocator_type())
198 : : _M_t(__c, __a)
199 : { _M_t._M_insert_unique(__l.begin(), __l.end()); }
200 : #endif
201 :
202 : /**
203 : * @brief Builds a %map from a range.
204 : * @param first An input iterator.
205 : * @param last An input iterator.
206 : *
207 : * Create a %map consisting of copies of the elements from [first,last).
208 : * This is linear in N if the range is already sorted, and NlogN
209 : * otherwise (where N is distance(first,last)).
210 : */
211 : template<typename _InputIterator>
212 : map(_InputIterator __first, _InputIterator __last)
213 : : _M_t()
214 : { _M_t._M_insert_unique(__first, __last); }
215 :
216 : /**
217 : * @brief Builds a %map from a range.
218 : * @param first An input iterator.
219 : * @param last An input iterator.
220 : * @param comp A comparison functor.
221 : * @param a An allocator object.
222 : *
223 : * Create a %map consisting of copies of the elements from [first,last).
224 : * This is linear in N if the range is already sorted, and NlogN
225 : * otherwise (where N is distance(first,last)).
226 : */
227 : template<typename _InputIterator>
228 : map(_InputIterator __first, _InputIterator __last,
229 : const _Compare& __comp,
230 : const allocator_type& __a = allocator_type())
231 : : _M_t(__comp, __a)
232 : { _M_t._M_insert_unique(__first, __last); }
233 :
234 : // FIXME There is no dtor declared, but we should have something
235 : // generated by Doxygen. I don't know what tags to add to this
236 : // paragraph to make that happen:
237 : /**
238 : * The dtor only erases the elements, and note that if the elements
239 : * themselves are pointers, the pointed-to memory is not touched in any
240 : * way. Managing the pointer is the user's responsibility.
241 : */
242 :
243 : /**
244 : * @brief %Map assignment operator.
245 : * @param x A %map of identical element and allocator types.
246 : *
247 : * All the elements of @a x are copied, but unlike the copy constructor,
248 : * the allocator object is not copied.
249 : */
250 : map&
251 0 : operator=(const map& __x)
252 : {
253 0 : _M_t = __x._M_t;
254 0 : return *this;
255 : }
256 :
257 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
258 : /**
259 : * @brief %Map move assignment operator.
260 : * @param x A %map of identical element and allocator types.
261 : *
262 : * The contents of @a x are moved into this map (without copying).
263 : * @a x is a valid, but unspecified %map.
264 : */
265 : map&
266 0 : operator=(map&& __x)
267 : {
268 : // NB: DR 1204.
269 : // NB: DR 675.
270 0 : this->clear();
271 0 : this->swap(__x);
272 0 : return *this;
273 : }
274 :
275 : /**
276 : * @brief %Map list assignment operator.
277 : * @param l An initializer_list.
278 : *
279 : * This function fills a %map with copies of the elements in the
280 : * initializer list @a l.
281 : *
282 : * Note that the assignment completely changes the %map and
283 : * that the resulting %map's size is the same as the number
284 : * of elements assigned. Old data may be lost.
285 : */
286 : map&
287 : operator=(initializer_list<value_type> __l)
288 : {
289 : this->clear();
290 : this->insert(__l.begin(), __l.end());
291 : return *this;
292 : }
293 : #endif
294 :
295 : /// Get a copy of the memory allocation object.
296 : allocator_type
297 : get_allocator() const
298 : { return _M_t.get_allocator(); }
299 :
300 : // iterators
301 : /**
302 : * Returns a read/write iterator that points to the first pair in the
303 : * %map.
304 : * Iteration is done in ascending order according to the keys.
305 : */
306 : iterator
307 817100 : begin()
308 817100 : { return _M_t.begin(); }
309 :
310 : /**
311 : * Returns a read-only (constant) iterator that points to the first pair
312 : * in the %map. Iteration is done in ascending order according to the
313 : * keys.
314 : */
315 : const_iterator
316 10440037 : begin() const
317 10440037 : { return _M_t.begin(); }
318 :
319 : /**
320 : * Returns a read/write iterator that points one past the last
321 : * pair in the %map. Iteration is done in ascending order
322 : * according to the keys.
323 : */
324 : iterator
325 28317361 : end()
326 28317361 : { return _M_t.end(); }
327 :
328 : /**
329 : * Returns a read-only (constant) iterator that points one past the last
330 : * pair in the %map. Iteration is done in ascending order according to
331 : * the keys.
332 : */
333 : const_iterator
334 10616419 : end() const
335 10616419 : { return _M_t.end(); }
336 :
337 : /**
338 : * Returns a read/write reverse iterator that points to the last pair in
339 : * the %map. Iteration is done in descending order according to the
340 : * keys.
341 : */
342 : reverse_iterator
343 : rbegin()
344 : { return _M_t.rbegin(); }
345 :
346 : /**
347 : * Returns a read-only (constant) reverse iterator that points to the
348 : * last pair in the %map. Iteration is done in descending order
349 : * according to the keys.
350 : */
351 : const_reverse_iterator
352 : rbegin() const
353 : { return _M_t.rbegin(); }
354 :
355 : /**
356 : * Returns a read/write reverse iterator that points to one before the
357 : * first pair in the %map. Iteration is done in descending order
358 : * according to the keys.
359 : */
360 : reverse_iterator
361 : rend()
362 : { return _M_t.rend(); }
363 :
364 : /**
365 : * Returns a read-only (constant) reverse iterator that points to one
366 : * before the first pair in the %map. Iteration is done in descending
367 : * order according to the keys.
368 : */
369 : const_reverse_iterator
370 : rend() const
371 : { return _M_t.rend(); }
372 :
373 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
374 : /**
375 : * Returns a read-only (constant) iterator that points to the first pair
376 : * in the %map. Iteration is done in ascending order according to the
377 : * keys.
378 : */
379 : const_iterator
380 : cbegin() const
381 : { return _M_t.begin(); }
382 :
383 : /**
384 : * Returns a read-only (constant) iterator that points one past the last
385 : * pair in the %map. Iteration is done in ascending order according to
386 : * the keys.
387 : */
388 : const_iterator
389 : cend() const
390 : { return _M_t.end(); }
391 :
392 : /**
393 : * Returns a read-only (constant) reverse iterator that points to the
394 : * last pair in the %map. Iteration is done in descending order
395 : * according to the keys.
396 : */
397 : const_reverse_iterator
398 : crbegin() const
399 : { return _M_t.rbegin(); }
400 :
401 : /**
402 : * Returns a read-only (constant) reverse iterator that points to one
403 : * before the first pair in the %map. Iteration is done in descending
404 : * order according to the keys.
405 : */
406 : const_reverse_iterator
407 : crend() const
408 : { return _M_t.rend(); }
409 : #endif
410 :
411 : // capacity
412 : /** Returns true if the %map is empty. (Thus begin() would equal
413 : * end().)
414 : */
415 : bool
416 0 : empty() const
417 0 : { return _M_t.empty(); }
418 :
419 : /** Returns the size of the %map. */
420 : size_type
421 0 : size() const
422 0 : { return _M_t.size(); }
423 :
424 : /** Returns the maximum size of the %map. */
425 : size_type
426 : max_size() const
427 : { return _M_t.max_size(); }
428 :
429 : // [23.3.1.2] element access
430 : /**
431 : * @brief Subscript ( @c [] ) access to %map data.
432 : * @param k The key for which data should be retrieved.
433 : * @return A reference to the data of the (key,data) %pair.
434 : *
435 : * Allows for easy lookup with the subscript ( @c [] )
436 : * operator. Returns data associated with the key specified in
437 : * subscript. If the key does not exist, a pair with that key
438 : * is created using default values, which is then returned.
439 : *
440 : * Lookup requires logarithmic time.
441 : */
442 : mapped_type&
443 22523609 : operator[](const key_type& __k)
444 : {
445 : // concept requirements
446 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
447 :
448 22523609 : iterator __i = lower_bound(__k);
449 : // __i->first is greater than or equivalent to __k.
450 22523609 : if (__i == end() || key_comp()(__k, (*__i).first))
451 16235610 : __i = insert(__i, value_type(__k, mapped_type()));
452 22523609 : return (*__i).second;
453 : }
454 :
455 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
456 : // DR 464. Suggestion for new member functions in standard containers.
457 : /**
458 : * @brief Access to %map data.
459 : * @param k The key for which data should be retrieved.
460 : * @return A reference to the data whose key is equivalent to @a k, if
461 : * such a data is present in the %map.
462 : * @throw std::out_of_range If no such data is present.
463 : */
464 : mapped_type&
465 : at(const key_type& __k)
466 : {
467 : iterator __i = lower_bound(__k);
468 : if (__i == end() || key_comp()(__k, (*__i).first))
469 : __throw_out_of_range(__N("map::at"));
470 : return (*__i).second;
471 : }
472 :
473 : const mapped_type&
474 : at(const key_type& __k) const
475 : {
476 : const_iterator __i = lower_bound(__k);
477 : if (__i == end() || key_comp()(__k, (*__i).first))
478 : __throw_out_of_range(__N("map::at"));
479 : return (*__i).second;
480 : }
481 :
482 : // modifiers
483 : /**
484 : * @brief Attempts to insert a std::pair into the %map.
485 :
486 : * @param x Pair to be inserted (see std::make_pair for easy creation
487 : * of pairs).
488 :
489 : * @return A pair, of which the first element is an iterator that
490 : * points to the possibly inserted pair, and the second is
491 : * a bool that is true if the pair was actually inserted.
492 : *
493 : * This function attempts to insert a (key, value) %pair into the %map.
494 : * A %map relies on unique keys and thus a %pair is only inserted if its
495 : * first element (the key) is not already present in the %map.
496 : *
497 : * Insertion requires logarithmic time.
498 : */
499 : std::pair<iterator, bool>
500 0 : insert(const value_type& __x)
501 0 : { return _M_t._M_insert_unique(__x); }
502 :
503 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
504 : /**
505 : * @brief Attempts to insert a list of std::pairs into the %map.
506 : * @param list A std::initializer_list<value_type> of pairs to be
507 : * inserted.
508 : *
509 : * Complexity similar to that of the range constructor.
510 : */
511 : void
512 : insert(std::initializer_list<value_type> __list)
513 : { insert (__list.begin(), __list.end()); }
514 : #endif
515 :
516 : /**
517 : * @brief Attempts to insert a std::pair into the %map.
518 : * @param position An iterator that serves as a hint as to where the
519 : * pair should be inserted.
520 : * @param x Pair to be inserted (see std::make_pair for easy creation
521 : * of pairs).
522 : * @return An iterator that points to the element with key of @a x (may
523 : * or may not be the %pair passed in).
524 : *
525 :
526 : * This function is not concerned about whether the insertion
527 : * took place, and thus does not return a boolean like the
528 : * single-argument insert() does. Note that the first
529 : * parameter is only a hint and can potentially improve the
530 : * performance of the insertion process. A bad hint would
531 : * cause no gains in efficiency.
532 : *
533 : * See
534 : * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
535 : * for more on @a hinting.
536 : *
537 : * Insertion requires logarithmic time (if the hint is not taken).
538 : */
539 : iterator
540 16258635 : insert(iterator __position, const value_type& __x)
541 16258635 : { return _M_t._M_insert_unique_(__position, __x); }
542 :
543 : /**
544 : * @brief Template function that attempts to insert a range of elements.
545 : * @param first Iterator pointing to the start of the range to be
546 : * inserted.
547 : * @param last Iterator pointing to the end of the range.
548 : *
549 : * Complexity similar to that of the range constructor.
550 : */
551 : template<typename _InputIterator>
552 : void
553 : insert(_InputIterator __first, _InputIterator __last)
554 : { _M_t._M_insert_unique(__first, __last); }
555 :
556 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
557 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
558 : // DR 130. Associative erase should return an iterator.
559 : /**
560 : * @brief Erases an element from a %map.
561 : * @param position An iterator pointing to the element to be erased.
562 : * @return An iterator pointing to the element immediately following
563 : * @a position prior to the element being erased. If no such
564 : * element exists, end() is returned.
565 : *
566 : * This function erases an element, pointed to by the given
567 : * iterator, from a %map. Note that this function only erases
568 : * the element, and that if the element is itself a pointer,
569 : * the pointed-to memory is not touched in any way. Managing
570 : * the pointer is the user's responsibility.
571 : */
572 : iterator
573 0 : erase(iterator __position)
574 0 : { return _M_t.erase(__position); }
575 : #else
576 : /**
577 : * @brief Erases an element from a %map.
578 : * @param position An iterator pointing to the element to be erased.
579 : *
580 : * This function erases an element, pointed to by the given
581 : * iterator, from a %map. Note that this function only erases
582 : * the element, and that if the element is itself a pointer,
583 : * the pointed-to memory is not touched in any way. Managing
584 : * the pointer is the user's responsibility.
585 : */
586 : void
587 : erase(iterator __position)
588 : { _M_t.erase(__position); }
589 : #endif
590 :
591 : /**
592 : * @brief Erases elements according to the provided key.
593 : * @param x Key of element to be erased.
594 : * @return The number of elements erased.
595 : *
596 : * This function erases all the elements located by the given key from
597 : * a %map.
598 : * Note that this function only erases the element, and that if
599 : * the element is itself a pointer, the pointed-to memory is not touched
600 : * in any way. Managing the pointer is the user's responsibility.
601 : */
602 : size_type
603 0 : erase(const key_type& __x)
604 0 : { return _M_t.erase(__x); }
605 :
606 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
607 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
608 : // DR 130. Associative erase should return an iterator.
609 : /**
610 : * @brief Erases a [first,last) range of elements from a %map.
611 : * @param first Iterator pointing to the start of the range to be
612 : * erased.
613 : * @param last Iterator pointing to the end of the range to be erased.
614 : * @return The iterator @a last.
615 : *
616 : * This function erases a sequence of elements from a %map.
617 : * Note that this function only erases the element, and that if
618 : * the element is itself a pointer, the pointed-to memory is not touched
619 : * in any way. Managing the pointer is the user's responsibility.
620 : */
621 : iterator
622 : erase(iterator __first, iterator __last)
623 : { return _M_t.erase(__first, __last); }
624 : #else
625 : /**
626 : * @brief Erases a [first,last) range of elements from a %map.
627 : * @param first Iterator pointing to the start of the range to be
628 : * erased.
629 : * @param last Iterator pointing to the end of the range to be erased.
630 : *
631 : * This function erases a sequence of elements from a %map.
632 : * Note that this function only erases the element, and that if
633 : * the element is itself a pointer, the pointed-to memory is not touched
634 : * in any way. Managing the pointer is the user's responsibility.
635 : */
636 : void
637 : erase(iterator __first, iterator __last)
638 : { _M_t.erase(__first, __last); }
639 : #endif
640 :
641 : /**
642 : * @brief Swaps data with another %map.
643 : * @param x A %map of the same element and allocator types.
644 : *
645 : * This exchanges the elements between two maps in constant
646 : * time. (It is only swapping a pointer, an integer, and an
647 : * instance of the @c Compare type (which itself is often
648 : * stateless and empty), so it should be quite fast.) Note
649 : * that the global std::swap() function is specialized such
650 : * that std::swap(m1,m2) will feed to this function.
651 : */
652 : void
653 0 : swap(map& __x)
654 0 : { _M_t.swap(__x._M_t); }
655 :
656 : /**
657 : * Erases all elements in a %map. Note that this function only
658 : * erases the elements, and that if the elements themselves are
659 : * pointers, the pointed-to memory is not touched in any way.
660 : * Managing the pointer is the user's responsibility.
661 : */
662 : void
663 0 : clear()
664 0 : { _M_t.clear(); }
665 :
666 : // observers
667 : /**
668 : * Returns the key comparison object out of which the %map was
669 : * constructed.
670 : */
671 : key_compare
672 7754883 : key_comp() const
673 7754883 : { return _M_t.key_comp(); }
674 :
675 : /**
676 : * Returns a value comparison object, built from the key comparison
677 : * object out of which the %map was constructed.
678 : */
679 : value_compare
680 : value_comp() const
681 : { return value_compare(_M_t.key_comp()); }
682 :
683 : // [23.3.1.3] map operations
684 : /**
685 : * @brief Tries to locate an element in a %map.
686 : * @param x Key of (key, value) %pair to be located.
687 : * @return Iterator pointing to sought-after element, or end() if not
688 : * found.
689 : *
690 : * This function takes a key and tries to locate the element with which
691 : * the key matches. If successful the function returns an iterator
692 : * pointing to the sought after %pair. If unsuccessful it returns the
693 : * past-the-end ( @c end() ) iterator.
694 : */
695 : iterator
696 1103662 : find(const key_type& __x)
697 1103662 : { return _M_t.find(__x); }
698 :
699 : /**
700 : * @brief Tries to locate an element in a %map.
701 : * @param x Key of (key, value) %pair to be located.
702 : * @return Read-only (constant) iterator pointing to sought-after
703 : * element, or end() if not found.
704 : *
705 : * This function takes a key and tries to locate the element with which
706 : * the key matches. If successful the function returns a constant
707 : * iterator pointing to the sought after %pair. If unsuccessful it
708 : * returns the past-the-end ( @c end() ) iterator.
709 : */
710 : const_iterator
711 157340 : find(const key_type& __x) const
712 157340 : { return _M_t.find(__x); }
713 :
714 : /**
715 : * @brief Finds the number of elements with given key.
716 : * @param x Key of (key, value) pairs to be located.
717 : * @return Number of elements with specified key.
718 : *
719 : * This function only makes sense for multimaps; for map the result will
720 : * either be 0 (not present) or 1 (present).
721 : */
722 : size_type
723 0 : count(const key_type& __x) const
724 0 : { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
725 :
726 : /**
727 : * @brief Finds the beginning of a subsequence matching given key.
728 : * @param x Key of (key, value) pair to be located.
729 : * @return Iterator pointing to first element equal to or greater
730 : * than key, or end().
731 : *
732 : * This function returns the first element of a subsequence of elements
733 : * that matches the given key. If unsuccessful it returns an iterator
734 : * pointing to the first element that has a greater value than given key
735 : * or end() if no such element exists.
736 : */
737 : iterator
738 22881024 : lower_bound(const key_type& __x)
739 22881024 : { return _M_t.lower_bound(__x); }
740 :
741 : /**
742 : * @brief Finds the beginning of a subsequence matching given key.
743 : * @param x Key of (key, value) pair to be located.
744 : * @return Read-only (constant) iterator pointing to first element
745 : * equal to or greater than key, or end().
746 : *
747 : * This function returns the first element of a subsequence of elements
748 : * that matches the given key. If unsuccessful it returns an iterator
749 : * pointing to the first element that has a greater value than given key
750 : * or end() if no such element exists.
751 : */
752 : const_iterator
753 : lower_bound(const key_type& __x) const
754 : { return _M_t.lower_bound(__x); }
755 :
756 : /**
757 : * @brief Finds the end of a subsequence matching given key.
758 : * @param x Key of (key, value) pair to be located.
759 : * @return Iterator pointing to the first element
760 : * greater than key, or end().
761 : */
762 : iterator
763 : upper_bound(const key_type& __x)
764 : { return _M_t.upper_bound(__x); }
765 :
766 : /**
767 : * @brief Finds the end of a subsequence matching given key.
768 : * @param x Key of (key, value) pair to be located.
769 : * @return Read-only (constant) iterator pointing to first iterator
770 : * greater than key, or end().
771 : */
772 : const_iterator
773 : upper_bound(const key_type& __x) const
774 : { return _M_t.upper_bound(__x); }
775 :
776 : /**
777 : * @brief Finds a subsequence matching given key.
778 : * @param x Key of (key, value) pairs to be located.
779 : * @return Pair of iterators that possibly points to the subsequence
780 : * matching given key.
781 : *
782 : * This function is equivalent to
783 : * @code
784 : * std::make_pair(c.lower_bound(val),
785 : * c.upper_bound(val))
786 : * @endcode
787 : * (but is faster than making the calls separately).
788 : *
789 : * This function probably only makes sense for multimaps.
790 : */
791 : std::pair<iterator, iterator>
792 : equal_range(const key_type& __x)
793 : { return _M_t.equal_range(__x); }
794 :
795 : /**
796 : * @brief Finds a subsequence matching given key.
797 : * @param x Key of (key, value) pairs to be located.
798 : * @return Pair of read-only (constant) iterators that possibly points
799 : * to the subsequence matching given key.
800 : *
801 : * This function is equivalent to
802 : * @code
803 : * std::make_pair(c.lower_bound(val),
804 : * c.upper_bound(val))
805 : * @endcode
806 : * (but is faster than making the calls separately).
807 : *
808 : * This function probably only makes sense for multimaps.
809 : */
810 : std::pair<const_iterator, const_iterator>
811 : equal_range(const key_type& __x) const
812 : { return _M_t.equal_range(__x); }
813 :
814 : template<typename _K1, typename _T1, typename _C1, typename _A1>
815 : friend bool
816 : operator==(const map<_K1, _T1, _C1, _A1>&,
817 : const map<_K1, _T1, _C1, _A1>&);
818 :
819 : template<typename _K1, typename _T1, typename _C1, typename _A1>
820 : friend bool
821 : operator<(const map<_K1, _T1, _C1, _A1>&,
822 : const map<_K1, _T1, _C1, _A1>&);
823 : };
824 :
825 : /**
826 : * @brief Map equality comparison.
827 : * @param x A %map.
828 : * @param y A %map of the same type as @a x.
829 : * @return True iff the size and elements of the maps are equal.
830 : *
831 : * This is an equivalence relation. It is linear in the size of the
832 : * maps. Maps are considered equivalent if their sizes are equal,
833 : * and if corresponding elements compare equal.
834 : */
835 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
836 : inline bool
837 : operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
838 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
839 : { return __x._M_t == __y._M_t; }
840 :
841 : /**
842 : * @brief Map ordering relation.
843 : * @param x A %map.
844 : * @param y A %map of the same type as @a x.
845 : * @return True iff @a x is lexicographically less than @a y.
846 : *
847 : * This is a total ordering relation. It is linear in the size of the
848 : * maps. The elements must be comparable with @c <.
849 : *
850 : * See std::lexicographical_compare() for how the determination is made.
851 : */
852 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
853 : inline bool
854 : operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
855 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
856 : { return __x._M_t < __y._M_t; }
857 :
858 : /// Based on operator==
859 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
860 : inline bool
861 : operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
862 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
863 : { return !(__x == __y); }
864 :
865 : /// Based on operator<
866 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
867 : inline bool
868 : operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
869 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
870 : { return __y < __x; }
871 :
872 : /// Based on operator<
873 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
874 : inline bool
875 : operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
876 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
877 : { return !(__y < __x); }
878 :
879 : /// Based on operator<
880 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
881 : inline bool
882 : operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
883 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
884 : { return !(__x < __y); }
885 :
886 : /// See std::map::swap().
887 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
888 : inline void
889 : swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
890 : map<_Key, _Tp, _Compare, _Alloc>& __y)
891 : { __x.swap(__y); }
892 :
893 : _GLIBCXX_END_NESTED_NAMESPACE
894 :
895 : #endif /* _STL_MAP_H */
|